1
|
Madadi-Goli N, Ahmadi K, Kamakoli MK, Azizi M, Khanipour S, Dizaji SP, Nasehi M, Siadat SD, Fateh A, Vaziri F. The importance of heteroresistance and efflux pumps in bedaquiline-resistant Mycobacterium tuberculosis isolates from Iran. Ann Clin Microbiol Antimicrob 2024; 23:36. [PMID: 38664815 PMCID: PMC11046812 DOI: 10.1186/s12941-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) continues to pose a threat to communities worldwide and remains a significant public health issue in several countries. We assessed the role of heteroresistance and efflux pumps in bedaquiline (BDQ)-resistant Mycobacterium tuberculosis isolates. METHODS Nineteen clinical isolates were included in the study, of which fifteen isolates were classified as MDR or XDR, while four isolates were fully susceptible. To evaluate BDQ heteroresistance, the Microplate Alamar Blue Assay (MABA) method was employed. For screening mixed infections, MIRU-VNTR was performed on clinical isolates. Mutations in the atpE and Rv0678 genes were determined based on next-generation sequencing data. Additionally, real-time PCR was applied to assess the expression of efflux pump genes in the absence and presence of verapamil (VP). RESULTS All 15 drug-resistant isolates displayed resistance to BDQ. Among the 19 total isolates, 21.05% (4/19) exhibited a heteroresistance pattern to BDQ. None of the isolates carried a mutation of the atpE and Rv0678 genes associated with BDQ resistance. Regarding the MIRU-VNTR analysis, most isolates (94.73%) showed the Beijing genotype. Fifteen (78.9%) isolates showed a significant reduction in BDQ MIC after VP treatment. The efflux pump genes of Rv0676c, Rv1258c, Rv1410c, Rv1634, Rv1819, Rv2459, Rv2846, and Rv3065 were overexpressed in the presence of BDQ. CONCLUSIONS Our results clearly demonstrated the crucial role of heteroresistance and efflux pumps in BDQ resistance. Additionally, we established a direct link between the Rv0676c gene and BDQ resistance. The inclusion of VP significantly reduced the MIC of BDQ in both drug-susceptible and drug-resistant clinical isolates.
Collapse
Affiliation(s)
- Nahid Madadi-Goli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Kamal Ahmadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Mansour Kargarpour Kamakoli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Azizi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sharareh Khanipour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Pourazar Dizaji
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mahshid Nasehi
- Department of Epidemiology and Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
3
|
Long Y, Wang B, Xie T, Luo R, Tang J, Deng J, Wang C. Overexpression of efflux pump genes is one of the mechanisms causing drug resistance in Mycobacterium tuberculosis. Microbiol Spectr 2024; 12:e0251023. [PMID: 38047702 PMCID: PMC10783012 DOI: 10.1128/spectrum.02510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Gene mutations cannot explain all drug resistance of Mycobacterium tuberculosis, and the overexpression of efflux pump genes is considered another important cause of drug resistance. A total of 46 clinical isolates were included in this study to analyze the overexpression of efflux pump genes in different resistant types of strains. The results showed that overexpression of efflux pump genes did not occur in sensitive strains. There was no significant trend in the overexpression of efflux pump genes before and after one-half of MIC drug induction. By adding the efflux pump inhibitor verapamil, we can observe the decrease of MIC of some drug-resistant strains. At the same time, this study ensured the reliability of calculating the relative expression level of efflux pump genes by screening reference genes and using two reference genes for the normalization of quantitative PCR. Therefore, this study confirms that the overexpression of efflux pump genes plays an important role in the drug resistance of clinical isolates of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ying Long
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bin Wang
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Tiancheng Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ruixin Luo
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Jing Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jianping Deng
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Campolattano N, D'Abrosca G, Russo L, De Siena B, Della Gala M, De Chiara I, Marasco R, Goff A, Waddell SJ, Sacco M, Muscariello L. Insight into the on/off switch that regulates expression of the MSMEG-3762/63 efflux pump in Mycobacterium smegmatis. Sci Rep 2023; 13:20332. [PMID: 37989843 PMCID: PMC10663510 DOI: 10.1038/s41598-023-47695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Drug resistance is one of the most difficult challenges facing tuberculosis (TB) control. Drug efflux is among the mechanisms leading to drug resistance. In our previous studies, we partially characterized the ABC-type MSMEG-3762/63 efflux pump in Mycobacterium smegmatis, which shares high percentage of identity with the Mycobacterium tuberculosis Rv1687/86c pump. MSMEG-3762/63 was shown to have extrusion activity for rifampicin and ciprofloxacin, used in first and second-line anti-TB treatments. Moreover, we described the functional role of the TetR-like MSMEG-3765 protein as a repressor of the MSMEG_3762/63/65 operon and orthologous Rv1687/86/85c in M. tuberculosis. Here we show that the operon is upregulated in the macrophage environment, supporting a previous observation of induction triggered by acid-nitrosative stress. Expression of the efflux pump was also induced by sub-inhibitory concentrations of rifampicin or ciprofloxacin. Both these drugs also prevented the binding of the MSMEG-3765 TetR repressor protein to its operator in the MSMEG_3762/63/65 operon. The hypothesis that these two drugs might be responsible for the induction of the efflux pump operon was assessed by bioinformatics analyses. Docking studies using a structural model of the regulator MSMEG-3765 showed that both antibiotics abolished the ability of this transcriptional repressor to recognize the efflux pump operon by interacting with the homodimer at different binding sites within the same binding pocket. Reduced binding of the repressor leads to induction of the efflux pump in M. smegmatis, and reduced efficacy of these two anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Nicoletta Campolattano
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Gianluca D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Barbara De Siena
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Milena Della Gala
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Ida De Chiara
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Rosangela Marasco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Aaron Goff
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Margherita Sacco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Lidia Muscariello
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy.
| |
Collapse
|
5
|
Kaya H, Ersoy L, Ülger M, Bozok T, Aslan G. Investigation of efflux pump genes in isoniazid resistant Mycobacterium tuberculosis isolates. Indian J Med Microbiol 2023; 46:100428. [PMID: 37945121 DOI: 10.1016/j.ijmmb.2023.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Tuberculosis (TB) is one of the most important infectious diseases worldwide. Resistance to antituberculosis drugs develops because of genetic mutations that render drug-activating enzymes inactive, changes in cell wall permeability, and increased expression of efflux pump genes and also combination therapy with efflux pump inhibitors may be more effective in drug-resistant TB patients. AIMS To investigate the effect of verapamil (VR) on isonicotinic acid hydrazide (INH) resistance and the expression of 21 efflux pump genes in INH monoresistant MTBC clinical isolates. STUDY DESIGN In vitro study. METHODS In our mycobacteriology laboratory, 10 INH monoresistant and 10 primary anti-TB drug-susceptible MTBC clinical isolates were selected. Drug susceptibilities for INH and VR were studied by resazurin microtiter plate method and minimum inhibitory concentration (MIC) was determined. Additionally, mRNA gene expressions were investigated by quantitative Real Time Polymerase Chain Reaction for 21 efflux gene regions. RESULTS While no change was observed in INH MICs of susceptible isolates under VR effect, 6 (60%) of the 10 INH-resistant isolates showed a decrease of less than one dilution in INH MIC under VR effect. VR significantly reduced resistance in resistant isolates (p < 0.05). INH monoresistant MTBC isolates showed a 2.85-fold expression increase in the Rv1634 region of the Major Facilitator Superfamily efflux family under INH stress (p = 0.029). No statistically significant change was observed in other efflux gene regions. Herein, increased expression was observed in the Rv1634 region, consistent with other studies in the literature, and this was associated with drug resistance. No significant change in expression was detected in other gene regions. CONCLUSION The effect of efflux pump inhibitor VR on INH MIC levels is promising for the treatment of resistant TB. However, studies with more resistant strains are needed to evaluate the efficacy of efflux pump genes.
Collapse
Affiliation(s)
- Hamide Kaya
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Türkiye.
| | - Leyla Ersoy
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Türkiye.
| | - Mahmut Ülger
- Mersin University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Mersin, Türkiye.
| | - Taylan Bozok
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Türkiye.
| | - Gönül Aslan
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Türkiye.
| |
Collapse
|
6
|
van der Heijden YF, Maruri F, Blackman A, Morrison R, Guo Y, Sterling TR. Mycobacterium tuberculosis Gene Expression Associated With Fluoroquinolone Resistance and Efflux Pump Inhibition. J Infect Dis 2023; 228:469-478. [PMID: 37079382 PMCID: PMC10428193 DOI: 10.1093/infdis/jiad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND We evaluated the relationship between response to efflux pump inhibition in fluoroquinolone-resistant Mycobacterium tuberculosis (Mtb) isolates and differences in gene expression and expression quantitative trait loci (eQTL). METHODS We determined ofloxacin minimum inhibitory concentration (MIC) for ofloxacin-resistant and -susceptible Mtb isolates without and with the efflux pump inhibitor verapamil. We performed RNA sequencing (RNA-seq), whole genome sequencing (WGS), and eQTL analysis, focusing on efflux pump, transport, and secretion-associated genes. RESULTS Of 42 ofloxacin-resistant Mtb isolates, 27 had adequate WGS coverage and acceptable RNA-seq quality. Of these 27, 7 had >2-fold reduction in ofloxacin MIC with verapamil; 6 had 2-fold reduction, and 14 had <2-fold reduction. Five genes (including Rv0191) had significantly increased expression in the MIC fold change >2 compared to <2 groups. Among regulated genes, 31 eQTLs (without ofloxacin) and 35 eQTLs (with ofloxacin) had significant allele frequency differences between MIC fold change >2 and <2 groups. Of these, Rv1410c, Rv2459, and Rv3756c (without ofloxacin) and Rv0191 and Rv3756c (with ofloxacin) have previously been associated with antituberculosis drug resistance. CONCLUSIONS In this first reported eQTL analysis in Mtb, Rv0191 had increased gene expression and significance in eQTL analysis, making it a candidate for functional evaluation of efflux-mediated fluoroquinolone resistance in Mtb.
Collapse
Affiliation(s)
- Yuri F van der Heijden
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- The Aurum Institute, Johannesburg, South Africa
| | - Fernanda Maruri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Robert Morrison
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Kiani MH, ul Hassan MR, Hussain S, Kiani ZH, Ibrahim IM, Shahnaz G, Rahdar A, Díez-Pascual AM. Cholesterol decorated thiolated stereocomplexed nanomicelles for improved anti-mycobacterial potential via efflux pump and mycothione reductase inhibition. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Wang Y, Shi Q, Chen Q, Zhou X, Yuan H, Jia X, Liu S, Li Q, Ge L. Emerging advances in identifying signal transmission molecules involved in the interaction between Mycobacterium tuberculosis and the host. Front Cell Infect Microbiol 2022; 12:956311. [PMID: 35959378 PMCID: PMC9359464 DOI: 10.3389/fcimb.2022.956311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (MTB) is an ancient chronic infectious disease and is still the leading cause of death worldwide due to a single infectious disease. MTB can achieve immune escape by interacting with host cells through its special cell structure and secreting a variety of effector proteins. Innate immunity-related pattern recognition receptors (PPR receptors) play a key role in the regulation of signaling pathways. In this review, we focus on the latest research progress on related signal transduction molecules in the interaction between MTB and the host. In addition, we provide new research ideas for the development of new anti-tuberculosis drug targets and lead compounds and provide an overview of information useful for approaching future tuberculosis host-oriented treatment research approaches and strategies, which has crucial scientific guiding significance and research value.
Collapse
Affiliation(s)
- Yue Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Qi Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuebin Zhou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Huiling Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiwen Jia
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyuan Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Qin Li, ; Lijun Ge,
| | - Lijun Ge
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qin Li, ; Lijun Ge,
| |
Collapse
|
9
|
Saeed DK, Shakoor S, Razzak SA, Hasan Z, Sabzwari SF, Azizullah Z, Kanji A, Nasir A, Shafiq S, Ghanchi NK, Hasan R. Variants associated with Bedaquiline (BDQ) resistance identified in Rv0678 and efflux pump genes in Mycobacterium tuberculosis isolates from BDQ naïve TB patients in Pakistan. BMC Microbiol 2022; 22:62. [PMID: 35209842 PMCID: PMC8876534 DOI: 10.1186/s12866-022-02475-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in the Rv0678, pepQ and atpE genes of Mycobacterium tuberculosis (MTB) have been reported to be associated with reduced antimycobacterial susceptibility to bedaquiline (BDQ). Resistance conferring mutations in treatment naïve MTB strains is likely to have implications for BDQ based new drug regimen that aim to shorten treatment duration. We therefore investigated the genetic basis of resistance to BDQ in MTB clinical isolates from BDQ naïve TB patients from Pakistan. In addition, mutations in genes associated with efflux pumps were investigated as an alternate mechanism of resistance. Methods Based on convenience sampling, we studied 48 MTB clinical isolates from BDQ naïve TB patients. These isolates (from our strain bank) included 38 MDR/pre-XDR/XDR (10 BDQ resistant, 8 BDQ intermediate and 20 BDQ susceptible) and 10 pan drug susceptible MTB isolates. All strains were subjected to whole genome sequencing and genomes were analysed to identify variants in Rv0678, pepQ, atpE, Rv1979c, mmpLS and mmpL5 and drug resistance associated efflux pump genes. Results Of the BDQ resistant and intermediate strains 44% (8/18) had variants in Rv0678 including; two reported mutations S63R/G, six previously unreported variants; L40F, R50Q and R107C and three frameshift mutations; G25fs, D64fs and D109fs. Variants in efflux pumps; Rv1273c (G462K), Rv0507c (R426H) and Rv1634c (E198R) were found to be present in drug resistant isolates including BDQ resistant and intermediate isolates. E198R in efflux pump gene Rv1634c was the most frequently occurring variant in BDQ resistant and intermediate isolates (n = 10). Conclusion We found RAVs in Rv0678 to be commonly associated with BDQ resistance. Further confirmation of the role of variants in efflux pump genes in resistance is required so that they may be incorporated in genome-based diagnostics for drug resistant MTB. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02475-4.
Collapse
Affiliation(s)
- Dania Khalid Saeed
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Sadia Shakoor
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Safina Abdul Razzak
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Saba Faraz Sabzwari
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Zahida Azizullah
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Samreen Shafiq
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Najia Karim Ghanchi
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan. .,Faculty of Infectious and Tropical Diseases, London School Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
10
|
Mahghani GA, Kargar M, Ghaemi EA, Kafilzadeh F, Davoodi H. Role of ESAT-6 in pathogenicity of Beijing and non-Beijing Mycobacterium tuberculosis isolates. Microb Pathog 2021; 162:105366. [PMID: 34968645 DOI: 10.1016/j.micpath.2021.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis Beijing genotype was associated with tuberculosis outbreaks and increased transmissibility. To understand the variation in virulence between Beijing and non-Beijing clinical isolates of M.tuberculosis genotypes, the esat-6 gene sequencing, and its expression was compared in the macrophage environment. MATERIALS & METHODS Among 64 nonrepetitive, culture-positive M.tuberculosis, DNA extraction of 24 and 40 pure confirmed Beijing and non-Beijing isolates was accompanied by the boiling method. esat-6 gene PCR amplification and their sequencing were carried out by specific primers and its expression was performed on human macrophage cell line U937 after 6, 12, and 18 h of exposure to bacilli. The esat-6 mRNA transcription and expression in M. tuberculosis treated macrophage by Real-Time PCR and Western blot method. RESULTS Data analysis based on sequencing of the east-6 gene PCR product showed that this gene exists in all isolates and there are no changes or single nucleotide variation between the Beijing and non-Beijing isolates. In Beijing strains, the esat-6 expression was increased during the study times, but it was constant in non-Beijing isolates. esat-6 gene expression in Beijing isolates reached to about 44.9 times more than non-Beijing isolates after 18 h incubation on the macrophages cell line. CONCLUSION esat-6 is a conserved gene both in Beijing and non-Beijing isolates of M.tuberculosis. More expression of the east-6 gene in the macrophage model may indicate that this gene is likely to play a more important role in increasing the pathogenicity of Beijing strains.
Collapse
Affiliation(s)
- Ghorban Ali Mahghani
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Ezzat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farshid Kafilzadeh
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Homa Davoodi
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
11
|
Meneguello JE, Arita GS, Silva JVDO, Ghiraldi-Lopes LD, Caleffi-Ferracioli KR, Siqueira VLD, Scodro RBDL, Pilau EJ, Campanerut-Sá PAZ, Cardoso RF. Insight about cell wall remodulation triggered by rifampicin in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2020; 120:101903. [PMID: 32090864 DOI: 10.1016/j.tube.2020.101903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 11/27/2022]
Abstract
Rifampicin plays an important role during the treatment of tuberculosis, which makes it to be recommended throughout the regimen. The molecular target for rifampicin activity and resistance is the bacterial RNA polymerase coded by rpoB. However, it has been observed that Mycobacterium tuberculosis could use different metabolic pathways contributing to drug activity/resistance. In this sense, Proteomics analysis has been a key aspect towards the understanding of the dynamic genome expression triggered by drugs and other M. tuberculosis hostile stimuli. Herein, we aimed to report the changes in the M. tuberculosis protein profile triggered by rifampicin. The M. tuberculosis H37Rv strain was submitted to 12, 24 and 48 h of rifampicin challenge, at the minimal inhibitory concentration (0.03 μg mL-1), and proteins were extracted. The protein identification was carried out by liquid chromatography coupled to mass spectrometry (LC-MS). Four proteins, Ino1 (Rv0046c), FabD (Rv2243), EsxK (Rv1197) and PPE60 (Rv3478) were statistically underexpressed over 48 h of rifampicin exposure, indicating that in addition to the known activity of rifampin in transcriptional machinery in M. tuberculosis, processes related to disturbance in cell wall synthesis and lipid metabolism in the bacillus are also triggered by rifampicin contributing to bacillus death.
Collapse
Affiliation(s)
- Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Gláucia Sayuri Arita
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - João Vitor de Oliveira Silva
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Luciana Dias Ghiraldi-Lopes
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Regiane Bertin de Lima Scodro
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Eduardo Jorge Pilau
- Postgraduate Program in Chemistry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Paula Aline Zannetti Campanerut-Sá
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil; Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil.
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil; Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
12
|
An Q, Li C, Chen Y, Deng Y, Yang T, Luo Y. Repurposed drug candidates for antituberculosis therapy. Eur J Med Chem 2020; 192:112175. [PMID: 32126450 DOI: 10.1016/j.ejmech.2020.112175] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
Antibiotics have been a key part of clinical treatments for more than 70 years. Long-term use of antimicrobial treatments has led to the development of severe bacterial resistance, which has become increasingly serious due to antibiotic abuse, resulting in the treatment of bacterial infections becoming challenging. The repurposing of approved drugs presents a promising strategy to address current bottlenecks in the development of novel antibacterial agents. Drug repurposing is a cost-effective emerging strategy, which aims to treat resistant infectious diseases by identifying known drugs with predicted efficacy for diseases other than the target disease. This strategy has potential in the treatment of tuberculosis (TB), particularly drug-resistant TB. In recent years, a panel of drugs approved for clinical use or clinical trials, such as linezolid, vancomycin and celecoxib, have been found to have anti-TB activities. However, the utility of drug repurposing is limited by the number of candidate compounds and their low activities. The low activities of repurposed drugs have slowed the development of a drug-repurposing strategy for anti-TB drugs. The present review discusses progress in the discovery of new anti-TB agents through drug repurposing since 2014. We also discuss the challenges faced and analyze the innovative ways that are being used to overcome these difficulties. This review may provide a useful guide for researchers in the field of drug repurposing.
Collapse
Affiliation(s)
- Qi An
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Chungen Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yao Chen
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yong Deng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|