1
|
Marino A, Campanella E, Stracquadanio S, Calvo M, Migliorisi G, Nicolosi A, Cosentino F, Marletta S, Spampinato S, Prestifilippo P, Stefani S, Cacopardo B, Nunnari G. Ceftazidime/Avibactam and Meropenem/Vaborbactam for the Management of Enterobacterales Infections: A Narrative Review, Clinical Considerations, and Expert Opinion. Antibiotics (Basel) 2023; 12:1521. [PMID: 37887222 PMCID: PMC10603868 DOI: 10.3390/antibiotics12101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This comprehensive review examines the unique attributes, distinctions, and clinical implications of ceftazidime-avibactam (CAZ-AVI) and meropenem-vaborbactam (MEM-VAB) against difficult-to-treat Enterobacterales infections. Our manuscript explores these antibiotics' pharmacokinetic and pharmacodynamic properties, antimicrobial activities, in vitro susceptibility testing, and clinical data. Moreover, it includes a meticulous examination of comparative clinical and microbiological studies, assessed and presented to provide clarity in making informed treatment choices for clinicians. Finally, we propose an expert opinion from a microbiological and a clinical point of view about their use in appropriate clinical settings. This is the first review aiming to provide healthcare professionals with valuable insights for making informed treatment decisions when combating carbapenem-resistant pathogens.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (B.C.); (G.N.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Edoardo Campanella
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (E.C.); (S.S.)
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-Vittorio Emanuele”, Via S. Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-Vittorio Emanuele”, Via S. Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Alice Nicolosi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Federica Cosentino
- Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy;
| | - Stefano Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37124 Verona, Italy;
| | - Serena Spampinato
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (E.C.); (S.S.)
| | | | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Bruno Cacopardo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (B.C.); (G.N.)
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (B.C.); (G.N.)
| |
Collapse
|
2
|
Chaïbi K, Jaureguy F, Do Rego H, Ruiz P, Mory C, El Helali N, Mrabet S, Mizrahi A, Zahar JR, Pilmis B. What to Do with the New Antibiotics? Antibiotics (Basel) 2023; 12:antibiotics12040654. [PMID: 37107016 PMCID: PMC10135159 DOI: 10.3390/antibiotics12040654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria-related infections have become a real public health problem and have exposed the risk of a therapeutic impasse. In recent years, many new antibiotics have been introduced to enrich the therapeutic armamentarium. Among these new molecules, some are mainly of interest for the treatment of the multidrug-resistant infections associated with Pseudomonas aeruginosa (ceftolozane/tazobactam and imipenem/relebactam); others are for carbapenem-resistant infections associated with Enterobacterales (ceftazidime/avibactam, meropenem/vaborbactam); and finally, there are others that are effective on the majority of multidrug-resistant Gram-negative bacilli (cefiderocol). Most international guidelines recommend these new antibiotics in the treatment of microbiologically documented infections. However, given the significant morbidity and mortality of these infections, particularly in the case of inadequate therapy, it is important to consider the place of these antibiotics in probabilistic treatment. Knowledge of the risk factors for multidrug-resistant Gram-negative bacilli (local ecology, prior colonization, failure of prior antibiotic therapy, and source of infection) seems necessary in order to optimize antibiotic prescriptions. In this review, we will assess these different antibiotics according to the epidemiological data.
Collapse
|
3
|
Pharmacokinetic-Pharmacodynamic Target Attainment Analyses as Support for Meropenem-Vaborbactam Dosing Regimens and Susceptibility Breakpoints. Antimicrob Agents Chemother 2022; 66:e0213021. [PMID: 36374023 PMCID: PMC9764998 DOI: 10.1128/aac.02130-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Meropenem-vaborbactam is a fixed-dose beta-lactam/beta-lactamase inhibitor with potent in vitro and in vivo activity against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales. Pharmacokinetic-pharmacodynamic (PK-PD) target attainment analyses were undertaken using population pharmacokinetic models, nonclinical PK-PD targets for efficacy, in vitro surveillance data, and simulation to provide support for 2 g meropenem-2 g vaborbactam every 8 h (q8h) administered as a 3-h intravenous (i.v.) infusion, and dosing regimens adjusted for patients with renal impairment. Simulated patients varying by renal function measure (estimated glomerular filtration rate [eGFR], mL/min/1.73 m2 and absolute eGFR, mL/min) and resembling the clinical trial population (complicated urinary tract infection, including acute pyelonephritis) were generated. The PK-PD targets for meropenem, the percentage of time on day 1 that free-drug plasma concentrations were above the MIC (%T>MIC), and vaborbactam, the ratio of free-drug plasma area under the concentration-time curve (AUC) on day 1 to the MIC (AUC:MIC ratio), were calculated. Percent probabilities of achieving meropenem free-drug plasma %T>MIC and vaborbactam free-drug plasma AUC:MIC ratio targets were assessed. MIC distributions for Enterobacterales, KPC-producing Enterobacterales, and Pseudomonas aeruginosa were considered as part of an algorithm to assess PK-PD target attainment. For assessments of free-drug plasma PK-PD targets associated with a 1-log10 CFU reduction from baseline, percent probabilities of PK-PD target attainment ranged from 81.3 to 100% at meropenem-vaborbactam MIC values of 4 or 8 μg/mL among simulated patients. The results of these PK-PD target attainment analyses provide support for a dosing regimen of 2 g meropenem-2 g vaborbactam q8h administered as a 3-h i.v. infusion, with dosing regimens adjusted for patients with renal impairment and a meropenem-vaborbactam susceptibility breakpoint of ≤8 μg/mL (tested with a fixed vaborbactam concentration of 8 μg/mL) for Enterobacterales and P. aeruginosa based on these dosing regimens.
Collapse
|
4
|
Yang P, Wu Z, Liu C, Zheng J, Wu N, Wu Z, Yi J, Lu M, Shen N. Clinical Outcomes and Microbiological Characteristics of Sequence Type 11 Klebsiella pneumoniae Infection. Front Med (Lausanne) 2022; 9:889020. [PMID: 35652076 PMCID: PMC9149164 DOI: 10.3389/fmed.2022.889020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Background Sequence type 11 (ST11) Klebsiella pneumoniae (Kp) is highly prevalent in China and is a typical sequence type among KPC-producing isolates. This study aimed to evaluate the clinical outcomes and microbiological features of ST11 Kp infections. Methods A retrospective cohort study was conducted at Peking University Third Hospital from January 2017 to March 2021. Clinical data were collected from medical records. Antimicrobial susceptibility testing and string tests were performed. Whole-genome sequencing was used to analyze the capsular serotypes, detect virulence-associated genes, and perform multilocus sequence typing. The risk of all-cause mortality in ST11 Kp-infected patients was compared to that in non-ST11 Kp-infected patients. Results From 139 patients infected with Kp, 49 ST11 Kp (35.3%) strains were isolated. The Charlson comorbidity index in the ST11 group was higher than that in the non-ST11 group (3.94 ± 1.59 vs. 2.41 ± 1.54, P = 0.001). A greater number of ST11 Kp-infected patients required ICU admission (46.9 vs. 16.7%, P < 0.001) and mechanical ventilation (28.6 vs. 10.0%, P = 0.005). All ST11 isolates presented a multidrug-resistant (MDR) phenotype, and twenty-nine (59.2%) hypervirulent Kp (hvKp) were identified. Twenty-four ST11 strains presented with hypermucoviscosity. The presence of capsular types K47 and K64 was frequent in the ST11 Kp strains (P < 0.001). The key virulence-associated genes rmpA, rmpA2, iucA, iroB, and peg344 were present in 26.5, 42.9, 59.2, 0, and 26.5% of the isolates, respectively, in the ST11 group. Twenty-one ST11 isolates harbored the combination of iucA+rmpA2. The 30-day mortality rate and sequential organ failure assessment (SOFA) score were significantly higher in ST11 Kp-infected patients than in non-ST11 Kp-infected patients (P < 0.01). ST11 Kp infection appeared to be an independent risk factor for mortality in ST11 Kp-infected patients. Conclusions A high prevalence of the ST11 clone was found in the hospital, which accounted for elevated antimicrobial resistance and exhibited great molecularly inferred virulence. Patients with ST11 Kp infection had a tendency toward increased 30-day mortality and SOFA scores. ST11 Kp infection was an independent risk factor for mortality, suggesting that enhanced surveillance and management are essential.
Collapse
Affiliation(s)
- Ping Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chao Liu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Jiajia Zheng
- Laboratory of Clinical Microbiology, Peking University Third Hospital, Beijing, China
| | - Nan Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zhangli Wu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ming Lu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.,Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.,Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Gaibani P, Giani T, Bovo F, Lombardo D, Amadesi S, Lazzarotto T, Coppi M, Rossolini GM, Ambretti S. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics (Basel) 2022; 11:antibiotics11050628. [PMID: 35625273 PMCID: PMC9137602 DOI: 10.3390/antibiotics11050628] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Multidrug resistance (MDR) represents a serious global threat due to the rapid global spread and limited antimicrobial options for treatment of difficult-to-treat (DTR) infections sustained by MDR pathogens. Recently, novel β-lactams/β-lactamase inhibitor combinations (βL-βLICs) have been developed for the treatment of DTR infections due to MDR Gram-negative pathogens. Although novel βL-βLICs exhibited promising in vitro and in vivo activities against MDR pathogens, emerging resistances to these novel molecules have recently been reported. Resistance to novel βL-βLICs is due to several mechanisms including porin deficiencies, increasing carbapenemase expression and/or enzyme mutations. In this review, we summarized the main mechanisms related to the resistance to ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam in MDR Gram-negative micro-organisms. We focused on antimicrobial activities and resistance traits with particular regard to molecular mechanisms related to resistance to novel βL-βLICs. Lastly, we described and discussed the main detection methods for antimicrobial susceptibility testing of such molecules. With increasing reports of resistance to novel βL-βLICs, continuous attention should be maintained on the monitoring of the phenotypic traits of MDR pathogens, into the characterization of related mechanisms, and on the emergence of cross-resistance to these novel antimicrobials.
Collapse
Affiliation(s)
- Paolo Gaibani
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
- Correspondence:
| | - Tommaso Giani
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy; (T.G.); (M.C.); (G.M.R.)
- Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy
| | - Federica Bovo
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
| | - Donatella Lombardo
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
| | - Stefano Amadesi
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
| | - Tiziana Lazzarotto
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40100 Bologna, Italy
| | - Marco Coppi
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy; (T.G.); (M.C.); (G.M.R.)
- Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy
| | - Gian Maria Rossolini
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy; (T.G.); (M.C.); (G.M.R.)
- Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy
| | - Simone Ambretti
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
| |
Collapse
|
6
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187-212. [PMID: 35439291 PMCID: PMC9890506 DOI: 10.1093/cid/ciac268] [Citation(s) in RCA: 230] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Correspondence: P. D. Tamma, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA ()
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Huang N, Chen T, Chen L, Zhang Y, Lin Y, Zheng X, Zhou T, Chen L. In vitro Activity of Meropenem-Vaborbactam versus Other Antibiotics Against Carbapenem-Resistant Escherichia coli from Southeastern China. Infect Drug Resist 2021; 14:2499-2507. [PMID: 34234477 PMCID: PMC8255899 DOI: 10.2147/idr.s315384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/12/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to evaluate the in vitro activity of meropenem-vaborbactam (MVB) against a collection of carbapenem-resistant Escherichia coli (CREC) isolates and to compare the activity with other antibiotics with regard to different separation sites, carbapenem-resistant mechanisms, and sequence types (STs). Methods A total of 58 CREC strains were used as the experimental strains from the First Affiliated Hospital of Wenzhou Medical University in southeastern China. The minimum inhibitory concentrations of MVB, ceftazidime-avibactam, and tigecycline against all the experimental strains were determined by the microdilution broth method. Results MVB exhibited higher antimicrobial activity (83% susceptibility) than that of other antibiotics, except for colistin and tigecycline. The susceptibility of CREC strains towards MVB varied with regard to carbapenem-resistant mechanisms and STs, especially in Klebsiella pneumoniae carbapenemase (KPC)-positive isolates and ST8 isolates. Conclusion MVB exhibited considerably high activity against KPC-producing and ST8 CREC isolates. It has the great potential to be an alternative for the treatment of infections caused by CREC after determining the type of carbapenemase, the susceptibility to MVB and/or STs.
Collapse
Affiliation(s)
- Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Liqiong Chen
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| |
Collapse
|
8
|
Karaiskos I, Galani I, Papoutsaki V, Galani L, Giamarellou H. Carbapenemase producing Klebsiella pneumoniae: implication on future therapeutic strategies. Expert Rev Anti Infect Ther 2021; 20:53-69. [PMID: 34033499 DOI: 10.1080/14787210.2021.1935237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The emergence of carbapenemase resistant Gram-negative is designated as an 'urgent' priority of public health. Carbapenemase producing Klebsiella pneumoniae (CPKP) is linked with significant mortality. Conventionally used antibiotics (polymyxins, tigecycline, aminoglycosides, etc.) are associated with poor efficacy and toxicity profiles are quite worrisome.Areas covered: This article reviews mechanism of resistance and evidence regarding novel treatments of infections caused by CPKP, focusing mainly on currently approved new therapies and implications on future therapeutic strategies. A review of novel β-lactam/β-lactamase inhibitors (BLI) recently approved and in clinical development as well as cefiderocol, eravacycline and apramycin are discussed.Expert opinion: Newly approved and forthcoming antimicrobial agents are promising to combat infections caused by CPKP. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam are novel agents with favorable outcome and associated with improved mortality in KPC-producing K. pneumoniae infections. However, are inactive against metallo-β-lactamases (MBL). Novel BLI in later stage of development, i.e. aztreonam-avibactam, cefepime-zidebactam, cefepime-taniborbactam, and meropenem-nacubactam as well as cefiderocol are active in vitro against both KPC and MBL. Potential expectations of future therapeutic strategies are improved potency against CPKP, more tolerable safety profile, and capability of overcoming current resistance mechanism of multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Ilias Karaiskos
- 1st Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Irene Galani
- 4th Department of Internal Medicine, University General Hospital ATTIKON, National and Kapodistrian University of Athens, Faculty of Medicine, Infectious Diseases Laboratory, Athens, Greece
| | | | - Lamprini Galani
- 1 Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Helen Giamarellou
- 1 Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| |
Collapse
|
9
|
Costa A, Figueroa-Espinosa R, Gaudenzi F, Lincopan N, Fuga B, Ghiglione B, Gutkind G, Di Conza J. Co-Occurrence of NDM-5 and RmtB in a Clinical Isolate of Escherichia coli Belonging to CC354 in Latin America. Front Cell Infect Microbiol 2021; 11:654852. [PMID: 33996632 PMCID: PMC8117236 DOI: 10.3389/fcimb.2021.654852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/14/2021] [Indexed: 11/15/2022] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-producing isolates are usually resistant to most β-lactams and other antibiotics as a result of the coexistence of several resistance markers, and they cause a variety of infections associated to high mortality rates. Although NDM-1 is the most prevalent one, other variants are increasing their frequency worldwide. In this study we describe the first clinical isolate of NDM-5- and RmtB-producing Escherichia coli in Latin America. E. coli (Ec265) was recovered from a urine sample of a female outpatient. Phenotypical and genotypical characterization of resistance markers and conjugation assays were performed. Genetic analysis of Ec265 was achieved by whole genome sequencing. Ec265 belonging to ST9693 (CC354), displayed resistance to most β-lactams (including carbapenems), aminoglycosides (gentamicin and amikacin), and quinolones. Several resistance genes were found, including blaNDM-5 and rmtB, located on a conjugative plasmid. blaNDM-5 genetic context is similar to others found around the world. Co-transfer of multiple antimicrobial resistance genes represents a particular challenge for treatment in clinical settings, whereas the spread of pathogens resistant to last resort antibiotics should raise an alarm in the healthcare system worldwide.
Collapse
Affiliation(s)
- Agustina Costa
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Roque Figueroa-Espinosa
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Florencia Gaudenzi
- Laboratorio de Bacteriología, Hospital Central de San Isidro "Dr. Melchor Ángel Posse, ", Martínez, Argentina
| | - Nilton Lincopan
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Barbara Ghiglione
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Gutkind
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - José Di Conza
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. Int J Mol Sci 2020; 21:ijms21239308. [PMID: 33291334 PMCID: PMC7731173 DOI: 10.3390/ijms21239308] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Carbapenem resistance is a major global health problem that seriously compromises the treatment of infections caused by nosocomial pathogens. Resistance to carbapenems mainly occurs via the production of carbapenemases, such as VIM, IMP, NDM, KPC and OXA, among others. Preclinical and clinical trials are currently underway to test a new generation of promising inhibitors, together with the recently approved avibactam, relebactam and vaborbactam. This review summarizes the main, most promising carbapenemase inhibitors synthesized to date, as well as their spectrum of activity and current stage of development. We particularly focus on β-lactam/β-lactamase inhibitor combinations that could potentially be used to treat infections caused by carbapenemase-producer pathogens of critical priority. The emergence of these new combinations represents a step forward in the fight against antimicrobial resistance, especially in regard to metallo-β-lactamases and carbapenem-hydrolysing class D β-lactamases, not currently inhibited by any clinically approved inhibitor.
Collapse
|
11
|
Papp-Wallace KM, Mack AR, Taracila MA, Bonomo RA. Resistance to Novel β-Lactam-β-Lactamase Inhibitor Combinations: The "Price of Progress". Infect Dis Clin North Am 2020; 34:773-819. [PMID: 33011051 DOI: 10.1016/j.idc.2020.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significant advances were made in antibiotic development during the past 5 years. Novel agents were added to the arsenal that target critical priority pathogens, including multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacterales. Of these, 4 novel β-lactam-β-lactamase inhibitor combinations (ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam) reached clinical approval in the United States. With these additions comes a significant responsibility to reduce the possibility of emergence of resistance. Reports in the rise of resistance toward ceftolozane-tazobactam and ceftazidime-avibactam are alarming. Clinicians and scientists must make every attempt to reverse or halt these setbacks.
Collapse
Affiliation(s)
- Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA.
| | - Andrew R Mack
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Magdalena A Taracila
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Tang HJ, Wang JH, Lai CC. Clinical efficacy and safety of novel carbapenem/β-lactamase inhibitor combinations against carbapenem-non-susceptible Gram-negative bacterial infection. J Glob Antimicrob Resist 2020; 23:111-112. [PMID: 32950718 DOI: 10.1016/j.jgar.2020.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jui-Hsiang Wang
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, Taiwan
| | - Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, Taiwan.
| |
Collapse
|
13
|
Novelli A, Del Giacomo P, Rossolini GM, Tumbarello M. Meropenem/vaborbactam: a next generation β-lactam β-lactamase inhibitor combination. Expert Rev Anti Infect Ther 2020; 18:643-655. [PMID: 32297801 DOI: 10.1080/14787210.2020.1756775] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION infections due to carbapenem-resistant Enterobacterales (CRE) constitute a worldwide threat and are associated with significant mortality, especially in fragile patients, and costs. Meropenem-vaborbactam (M/V) is a combination of a group 2 carbapenem with a novel cyclic boronic acid-based β-lactamase inhibitor which has shown good efficacy against KPC carbapenemase-producing Klebsiella pneumoniae, which are amongst the most prevalent types of CRE. AREAS COVERED This article reviews the microbiological and pharmacological profile and current clinical experience and safety of M/V in the treatment of infections caused by CRE. EXPERT OPINION M/V is a promising drug for the treatment of infections due to KPC-producing CRE (KPC-CRE). It exhibited an almost complete coverage of KPC-CRE isolates from large surveillance studies and a low propensity for resistance selection, retaining activity also against strains producing KPC mutants resistant to ceftazidime-avibactam. Both meropenem and vaborbactam have a favorable pharmacokinetic profile, with similar kinetic properties, a good intrapulmonary penetration, and are efficiently cleared during continuous venovenous hemofiltration (CVVH). According to available data, M/V monotherapy is associated with higher clinical cure rates and lower rates of adverse events, especially in terms of nephrotoxicity, if compared to 'older' combination therapies.
Collapse
Affiliation(s)
- Andrea Novelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence , Florence, Italy
| | - Paola Del Giacomo
- UOC Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence and Clinical Microbiology and Virology Unit, Florence Careggi University Hospital , Florence, Italy
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy.,Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore , Rome, Italy
| |
Collapse
|
14
|
Otsuka Y. Potent Antibiotics Active against Multidrug-Resistant Gram-Negative Bacteria. Chem Pharm Bull (Tokyo) 2020; 68:182-190. [DOI: 10.1248/cpb.c19-00842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Linciano P, Vicario M, Kekez I, Bellio P, Celenza G, Martín-Blecua I, Blázquez J, Cendron L, Tondi D. Phenylboronic Acids Probing Molecular Recognition against Class A and Class C β-lactamases. Antibiotics (Basel) 2019; 8:antibiotics8040171. [PMID: 31574990 PMCID: PMC6963673 DOI: 10.3390/antibiotics8040171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/24/2022] Open
Abstract
Worldwide dissemination of pathogens resistant to almost all available antibiotics represent a real problem preventing efficient treatment of infectious diseases. Among antimicrobial used in therapy, β-lactam antibiotics represent 40% thus playing a crucial role in the management of infections treatment. We report a small series of phenylboronic acids derivatives (BAs) active against class A carbapenemases KPC-2 and GES-5, and class C cephalosporinases AmpC. The inhibitory profile of our BAs against class A and C was investigated by means of molecular docking, enzyme kinetics and X-ray crystallography. We were interested in the mechanism of recognition among class A and class C to direct the design of broad serine β-Lactamases (SBLs) inhibitors. Molecular modeling calculations vs GES-5 and crystallographic studies vs AmpC reasoned, respectively, the ortho derivative 2 and the meta derivative 3 binding affinity. The ability of our BAs to protect β-lactams from BLs hydrolysis was determined in biological assays conducted against clinical strains: Fractional inhibitory concentration index (FICI) tests confirmed their ability to be synergic with β-lactams thus restoring susceptibility to meropenem. Considering the obtained results and the lack of cytotoxicity, our derivatives represent validated probe for the design of SBLs inhibitors.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Mattia Vicario
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | - Ivana Kekez
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100 L'Aquila, Italy.
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100 L'Aquila, Italy.
| | | | - Jesús Blázquez
- National Center of Biotechnology-CSIC, Calle Darwin 3, 28049 Madrid, Spain.
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| |
Collapse
|
16
|
Cendron L, Quotadamo A, Maso L, Bellio P, Montanari M, Celenza G, Venturelli A, Costi MP, Tondi D. X-ray Crystallography Deciphers the Activity of Broad-Spectrum Boronic Acid β-Lactamase Inhibitors. ACS Med Chem Lett 2019; 10:650-655. [PMID: 30996812 DOI: 10.1021/acsmedchemlett.8b00607] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/24/2022] Open
Abstract
Recent decades have witnessed a dramatic increase of multidrug resistant (MDR) bacteria, compromising the efficacy of available antibiotics, and a continual decline in the discovery of novel antibacterials. We recently reported the first library of benzo[b]thiophen-2-ylboronic acid inhibitors sharing broad spectrum activity against β-lactamases (BLs). The ability of these compounds to inhibit structurally and mechanistically different types of β-lactamases has been here structurally investigated. An extensive X-ray crystallographic analysis of boronic acids (BAs) binding to proteins representative of serine BLs (SBLs) and metallo β-lactamases (MBLs) have been conducted to depict the role played by the boronic group in driving molecular recognition, especially in the interaction with MBLs. Our derivatives are the first case of noncyclic boronic acids active against MBLs and represent a productive route toward potent broad-spectrum inhibitors.
Collapse
Affiliation(s)
- Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Antonio Quotadamo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lorenzo Maso
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, via Vetoio 1, 67100 L’Aquila, Italy
| | - Martina Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, via Vetoio 1, 67100 L’Aquila, Italy
| | | | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
17
|
Linciano P, Cendron L, Gianquinto E, Spyrakis F, Tondi D. Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. ACS Infect Dis 2019; 5:9-34. [PMID: 30421910 DOI: 10.1021/acsinfecdis.8b00247] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The worldwide emergence of New Delhi metallo-β-lactamase-1 (NDM-1) as a carbapenemase able to hydrolyze nearly all available β-lactam antibiotics has characterized the past decade, endangering efficacious antibacterial treatments. No inhibitors for NDM-1 are available in therapy, nor are promising compounds in the pipeline for future NDM-1 inhibitors. We report the studies dedicated to the design and development of effective NDM-1 inhibitors. The discussion for each agent moves from the employed design strategy to the ability of the identified inhibitor to synergize β-lactam antibiotics. A structural analysis of NDM-1 mechanism of action based on selected X-ray complexes is also reported: the intrinsic flexibility of the binding site and the comparison between penicillin/cephalosporin and carbapenem mechanisms of hydrolysis are evaluated. Despite the valuable progress in terms of structural and mechanistic information, the design of a potent NDM-1 inhibitor to be introduced in therapy remains challenging. Certainly, only the deep knowledge of NDM-1 architecture and of the variable mechanism of action that NDM-1 employs against different classes of substrates could orient a successful drug discovery campaign.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|