1
|
Daza Prieto B, Raicevic N, Martinovic A, Ladstätter J, Zuber Bogdanovic I, Schorpp A, Stoeger A, Mach RL, Ruppitsch W, Cabal A. Genetic diversity and distinction of Enterococcus faecium and Enterococcus lactis in traditional Montenegrin brine cheeses and salamis. Front Microbiol 2024; 15:1473938. [PMID: 39723131 PMCID: PMC11668737 DOI: 10.3389/fmicb.2024.1473938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Enterococcus faecium is a widespread acid-lactic bacterium found in the environment, humans, and animal microbiota, and it also plays a role in the production of traditional food. However, the worldwide emergence of multidrug-resistant E. faecium strains represents a major public health threat and is the primary reason that the genus Enterococcus is not recommended for the Qualified Presumption of Safety (QPS) list of the European Food Safety Authority (EFSA), raising concerns about its presence in food products. Methods In this study, 39 E. faecium and 5 E. lactis isolates were obtained from artisanal brine cheeses and dry sausages, sourced from 21 different Montenegrin producers. The isolates were collected following the ISO 15214:1998 international method and processed for whole-genome sequencing (WGS). Results Genome analysis based on core genome multilocus sequence type (cgMLST) revealed a high diversity among isolates. Furthermore, the isolates carried antimicrobial resistance genes; the virulence genes acm, sgrA, and ecbA; the bacteriocin genes Enterolysin A, Enterocin A, Enterocin P, Duracin Q, Enterocin B, Bacteriocin 31, Enterocin EJ97, Sactipeptides, and Enterocin SEK4; the secondary metabolite genes T3PKS, cyclic lactone autoinducer, RiPP-like, and NRPS and a maximum of eight plasmids. Conclusion This study highlights the need for careful monitoring of E. faecium and E. lactis strains in food to ensure they do not pose any potential risks to consumer safety.
Collapse
Affiliation(s)
- Beatriz Daza Prieto
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Nadja Raicevic
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Dona Gorica, Podgorica, Montenegro
| | - Aleksandra Martinovic
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Dona Gorica, Podgorica, Montenegro
| | - Johann Ladstätter
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Ivana Zuber Bogdanovic
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Dona Gorica, Podgorica, Montenegro
| | - Anika Schorpp
- Institute for Animal Nutrition and Feed, Austrian Agency for Health and Food Safety, Linz, Austria
| | - Anna Stoeger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area of Biochemical Technology, Technical University Vienna, Vienna, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
- Centre of Excellence for Digitalisation of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Dona Gorica, Podgorica, Montenegro
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Adriana Cabal
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
2
|
Knudsen MJS, Barker Jensen C, Jørgensen RL, Petersen AM, Qvist Kristiansen G, Lisby JG, Worning P, Westh H, Pinholt M. Development of a PCR assay for rapid and accurate detection of an emerging vanB Enterococcus faecium clone in the Capital Region of Denmark. JAC Antimicrob Resist 2024; 6:dlae180. [PMID: 39512360 PMCID: PMC11540918 DOI: 10.1093/jacamr/dlae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Abstract
Objectives To develop and validate a real-time PCR assay detecting the sequence bridging Tn1549 and the Enterococcus faecium chromosome in the emerging vanB vancomycin-resistant E. faecium (VREfm) clone (ST80/CT2406). Methods The Tn1549 insertion site was determined on routinely sequenced VREfm isolates. The outer boundaries of Tn1549 and adjoining host bacterial sequences were determined using a BLAST search in the silent information regulator gene sir2. Next, the primers and probe were developed, targeting the sequence bridging Tn1549 and the E. faecium chromosome. Finally, the PCR assay was validated on well-characterized strains and prospectively performed on rectal screening samples submitted to our laboratory. Results and conclusions The PCR assay proved to be accurate and provide rapid diagnosis of the emerging vanB VREfm in rectal screening samples.
Collapse
Affiliation(s)
| | - Christel Barker Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Rikke Lind Jørgensen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Andreas Munk Petersen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Qvist Kristiansen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jan Gorm Lisby
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Peder Worning
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
3
|
Segawa T, Masuda K, Hisatsune J, Ishida-Kuroki K, Sugawara Y, Kuwabara M, Nishikawa H, Hiratsuka T, Aota T, Tao Y, Iwahashi Y, Ueda K, Mae K, Masumoto K, Kitagawa H, Komatsuzawa H, Ohge H, Sugai M. Genomic analysis of inter-hospital transmission of vancomycin-resistant Enterococcus faecium sequence type 80 isolated during an outbreak in Hiroshima, Japan. Antimicrob Agents Chemother 2024; 68:e0171623. [PMID: 38506550 PMCID: PMC11064488 DOI: 10.1128/aac.01716-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Outbreaks caused by vancomycin-resistant enterococci that transcend jurisdictional boundaries are occurring worldwide. This study focused on a vancomycin-resistant enterococcus outbreak that occurred between 2018 and 2021 across two cities in Hiroshima, Japan. The study involved genetic and phylogenetic analyses using whole-genome sequencing of 103 isolates of vancomycin-resistant enterococci to identify the source and transmission routes of the outbreak. Phylogenetic analysis was performed using core genome multilocus sequence typing and core single-nucleotide polymorphisms; infection routes between hospitals were inferred using BadTrIP. The outbreak was caused by Enterococcus faecium sequence type (ST) 80 carrying the vanA plasmid, which was derived from strain A10290 isolated in India. Of the 103 isolates, 93 were E. faecium ST80 transmitted across hospitals. The circular vanA plasmid of the Hiroshima isolates was similar to the vanA plasmid of strain A10290 and transferred from E. faecium ST80 to other STs of E. faecium and other Enterococcus species by conjugation. The inferred transmission routes across hospitals suggest the existence of a central hospital serving as a hub, propagating vancomycin-resistant enterococci to multiple hospitals. Our study highlights the importance of early intervention at the key central hospital to prevent the spread of the infection to small medical facilities, such as nursing homes, with limited medical resources and a high number of vulnerable individuals.
Collapse
Affiliation(s)
- Takaya Segawa
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Japan
| | - Kanako Masuda
- Hiroshima Prefectural Center for Disease Control and Prevention, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Kasumi Ishida-Kuroki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Japan
| | - Masao Kuwabara
- Hiroshima Prefectural Center for Disease Control and Prevention, Hiroshima, Japan
| | - Hideki Nishikawa
- Hiroshima Prefectural Center for Disease Control and Prevention, Hiroshima, Japan
| | - Takahiro Hiratsuka
- Hiroshima Prefectural Technology Research Institute, Public Health and Environment Center, Hiroshima, Japan
| | - Tatsuaki Aota
- Hiroshima City Institute of Public Health, Hiroshima, Japan
| | - Yasuo Tao
- Hiroshima City Public Health Center, Hiroshima, Japan
| | | | - Kuniko Ueda
- Hiroshima City Public Health Center, Hiroshima, Japan
| | - Kaori Mae
- Hiroshima City Medical Association Clinical Laboratory, Hiroshima, Japan
| | - Ken Masumoto
- Hiroshima City Medical Association Clinical Laboratory, Hiroshima, Japan
| | - Hiroki Kitagawa
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Hitoshi Komatsuzawa
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ohge
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| |
Collapse
|
4
|
AL Rubaye M, Janice J, Bjørnholt JV, Kacelnik O, Haldorsen BC, Nygaard RM, Hegstad J, Sundsfjord A, Hegstad K. The population structure of vancomycin-resistant and -susceptible Enterococcus faecium in a low-prevalence antimicrobial resistance setting is highly influenced by circulating global hospital-associated clones. Microb Genom 2023; 9:001160. [PMID: 38112685 PMCID: PMC10763505 DOI: 10.1099/mgen.0.001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Between 2010 and 2015 the incidence of vancomycin-resistant Enterococcus faecium (VREfm) in Norway increased dramatically. Hence, we selected (1) a random subset of vancomycin-resistant enterococci (VRE) from the Norwegian Surveillance System for Communicable Diseases (2010-15; n=239) and (2) Norwegian vancomycin-susceptible E. faecium (VSEfm) bacteraemia isolates from the national surveillance system for antimicrobial resistance in microbes (2008 and 2014; n=261) for further analysis. Whole-genome sequences were collected for population structure, van gene cluster, mobile genetic element and virulome analysis, as well as antimicrobial susceptibility testing. Comparative genomic and phylogeographical analyses were performed with complete genomes of global E. faecium strains from the National Center for Biotechnology Information (NCBI) (1946-2022; n=272). All Norwegian VREfm and most of the VSEfm clustered with global hospital-associated sequence types (STs) in the phylogenetic subclade A1. The vanB2 subtype carried by chromosomal Tn1549 integrative conjugative elements was the dominant van type. The major Norwegian VREfm cluster types (CTs) were in accordance with concurrent European CTs. The dominant vanB-type VREfm CTs, ST192-CT3/26 and ST117-CT24, were mostly linked to a single hospital in Norway where the clones spread after independent chromosomal acquisition of Tn1549. The less prevalent vanA VRE were associated with more diverse CTs and vanA carrying Inc18 or RepA_N plasmids with toxin-antitoxin systems. Only 5 % of the Norwegian VRE were Enterococcus faecalis, all of which contained vanB. The Norwegian VREfm and VSEfm isolates harboured CT-specific virulence factor (VF) profiles supporting biofilm formation and colonization. The dominant VREfm CTs in general hosted more virulence determinants than VSEfm. The phylogenetic clade B VSEfm isolates (n=21), recently classified as Enterococcus lactis, harboured fewer VFs than E. faecium in general, and particularly subclade A1 isolates. In conclusion, the population structure of Norwegian E. faecium isolates mirrors the globally prevalent clones and particularly concurrent European VREfm/VSEfm CTs. Novel chromosomal acquisition of vanB2 on Tn1549 from the gut microbiota, however, formed a single major hospital VREfm outbreak. Dominant VREfm CTs contained more VFs than VSEfm.
Collapse
Affiliation(s)
- Mushtaq AL Rubaye
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Kacelnik
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørg C. Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Randi M. Nygaard
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Joachim Hegstad
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - the Norwegian VRE study group
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Cimen C, Berends MS, Bathoorn E, Lokate M, Voss A, Friedrich AW, Glasner C, Hamprecht A. Vancomycin-resistant enterococci (VRE) in hospital settings across European borders: a scoping review comparing the epidemiology in the Netherlands and Germany. Antimicrob Resist Infect Control 2023; 12:78. [PMID: 37568229 PMCID: PMC10422769 DOI: 10.1186/s13756-023-01278-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The rising prevalence of vancomycin-resistant enterococci (VRE) is a matter of concern in hospital settings across Europe without a distinct geographical pattern. In this scoping review, we compared the epidemiology of vancomycin-resistant Enterococcus spp. in hospitals in the Netherlands and Germany, between 1991 and 2022. We searched PubMed and summarized the national antibiotic resistance surveillance data of the two countries. We included 46 studies and summarized national surveillance data from the NethMap in the Netherlands, the National Antimicrobial Resistance Surveillance database in Germany, and the EARS-Net data. In total, 12 studies were conducted in hospitals in the Netherlands, 32 were conducted in German hospitals, and an additional two studies were conducted in a cross-border setting. The most significant difference between the two countries was that studies in Germany showed an increasing trend in the prevalence of VRE in hospitals, and no such trend was observed in studies in the Netherlands. Furthermore, in both Dutch and German hospitals, it has been revealed that the molecular epidemiology of VREfm has shifted from a predominance of vanA towards vanB over the years. According to national surveillance reports, vancomycin resistance in Enterococcus faecium clinical isolates fluctuates below 1% in Dutch hospitals, whereas it follows an increasing trend in German hospitals (above 20%), as supported by individual studies. This review demonstrates that VRE is more frequently encountered in German than in Dutch hospitals and discusses the underlying factors for the difference in VRE occurrence in these two neighboring countries by comparing differences in healthcare systems, infection prevention control (IPC) guidelines, and antibiotic use in the Netherlands and Germany.
Collapse
Affiliation(s)
- Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs S Berends
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Epidemiology, Certe Medical Diagnostics and Advice Foundation, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Maechler F, Weber A, Schwengers O, Schwab F, Denkel L, Behnke M, Gastmeier P, Kola A. Split k-mer analysis compared to cgMLST and SNP-based core genome analysis for detecting transmission of vancomycin-resistant enterococci: results from routine outbreak analyses across different hospitals and hospitals networks in Berlin, Germany. Microb Genom 2023; 9:mgen000937. [PMID: 36748706 PMCID: PMC9973845 DOI: 10.1099/mgen.0.000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/22/2022] [Indexed: 01/31/2023] Open
Abstract
The increase of Vancomycin-resistant Enterococcus faecium (VREfm) in recent years has been partially attributed to the rise of specific clonal lineages, which have been identified throughout Germany. To date, there is no gold standard for the interpretation of genomic data for outbreak analyses. New genomic approaches such as split k-mer analysis (SKA) could support cluster attribution for routine outbreak investigation. The aim of this project was to investigate frequent clonal lineages of VREfm identified during suspected outbreaks across different hospitals, and to compare genomic approaches including SKA in routine outbreak investigation. We used routine outbreak laboratory data from seven hospitals and three different hospital networks in Berlin, Germany. Short-read libraries were sequenced on the Illumina MiSeq system. We determined clusters using the published Enterococcus faecium-cgMLST scheme (threshold ≤20 alleles), and assigned sequence and complex types (ST, CT), using the Ridom SeqSphere+ software. For each cluster as determined by cgMLST, we used pairwise core-genome SNP-analysis and SKA at thresholds of ten and seven SNPs, respectively, to further distinguish cgMLST clusters. In order to investigate clinical relevance, we analysed to what extent epidemiological linkage backed the clusters determined with different genomic approaches. Between 2014 and 2021, we sequenced 693 VREfm strains, and 644 (93 %) were associated within cgMLST clusters. More than 74 % (n=475) of the strains belonged to the six largest cgMLST clusters, comprising ST117, ST78 and ST80. All six clusters were detected across several years and hospitals without apparent epidemiological links. Core SNP analysis identified 44 clusters with a median cluster size of three isolates (IQR 2-7, min-max 2-63), as well as 197 singletons (41.4 % of 475 isolates). SKA identified 67 clusters with a median cluster size of two isolates (IQR 2-4, min-max 2-19), and 261 singletons (54.9 % of 475 isolates). Of the isolate pairs attributed to clusters, 7 % (n=3064/45 596) of pairs in clusters determined by standard cgMLST, 15 % (n=1222/8500) of pairs in core SNP-clusters and 51 % (n=942/1880) of pairs in SKA-clusters showed epidemiological linkage. The proportion of epidemiological linkage differed between sequence types. For VREfm, the discriminative ability of the widely used cgMLST based approach at ≤20 alleles difference was insufficient to rule out hospital outbreaks without further analytical methods. Cluster assignment guided by core genome SNP analysis and the reference free SKA was more discriminative and correlated better with obvious epidemiological linkage, at least recently published thresholds (ten and seven SNPs, respectively) and for frequent STs. Besides higher overall discriminative power, the whole-genome approach implemented in SKA is also easier and faster to conduct and requires less computational resources.
Collapse
Affiliation(s)
- Friederike Maechler
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Weber
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Schwengers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Frank Schwab
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Luisa Denkel
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Behnke
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Kola
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Lisotto P, Raangs EC, Couto N, Rosema S, Lokate M, Zhou X, Friedrich AW, Rossen JWA, Harmsen HJM, Bathoorn E, Chlebowicz-Fliss MA. Long-read sequencing-based in silico phage typing of vancomycin-resistant Enterococcus faecium. BMC Genomics 2021; 22:758. [PMID: 34688274 PMCID: PMC8542323 DOI: 10.1186/s12864-021-08080-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) are successful nosocomial pathogens able to cause hospital outbreaks. In the Netherlands, core-genome MLST (cgMLST) based on short-read sequencing is often used for molecular typing. Long-read sequencing is more rapid and provides useful information about the genome's structural composition but lacks the precision required for SNP-based typing and cgMLST. Here we compared prophages among 50 complete E. faecium genomes belonging to different lineages to explore whether a phage signature would be usable for typing and identifying an outbreak caused by VRE. As a proof of principle, we investigated if long-read sequencing data would allow for identifying phage signatures and thereby outbreak-related isolates. RESULTS Analysis of complete genome sequences of publicly available isolates showed variation in phage content among different lineages defined by MLST. We identified phage present in multiple STs as well as phages uniquely detected within a single lineage. Next, in silico phage typing was applied to twelve MinION sequenced isolates belonging to two different genetic backgrounds, namely ST117/CT24 and ST80/CT16. Genomic comparisons of the long-read-based assemblies allowed us to correctly identify isolates of the same complex type based on global genome architecture and specific phage signature similarity. CONCLUSIONS For rapid identification of related VRE isolates, phage content analysis in long-read sequencing data is possible. This allows software development for real-time typing analysis of long-read sequencing data, which will generate results within several hours. Future studies are required to assess the discriminatory power of this method in the investigation of ongoing outbreaks over a longer time period.
Collapse
Affiliation(s)
- Paola Lisotto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erwin C Raangs
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.,IDbyDNA Inc., Salt Lake City, UT, USA
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Monika A Chlebowicz-Fliss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Lisotto P, Couto N, Rosema S, Lokate M, Zhou X, Bathoorn E, Harmsen HJM, Friedrich AW, Rossen JWA, Chlebowicz-Fliss MA. Molecular Characterisation of Vancomycin-Resistant Enterococcus faecium Isolates Belonging to the Lineage ST117/CT24 Causing Hospital Outbreaks. Front Microbiol 2021; 12:728356. [PMID: 34646248 PMCID: PMC8503688 DOI: 10.3389/fmicb.2021.728356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Vancomycin-resistant Enterococcus faecium (VREfm) is a successful nosocomial pathogen. The current molecular method recommended in the Netherlands for VREfm typing is based on core genome Multilocus sequence typing (cgMLST), however, the rapid emergence of specific VREfm lineages challenges distinguishing outbreak isolates solely based on their core genome. Here, we explored if a detailed molecular characterisation of mobile genetic elements (MGEs) and accessory genes could support and expand the current molecular typing of VREfm isolates sharing the same genetic background, enhancing the discriminatory power of the analysis. Materials/Methods: The genomes of 39 VREfm and three vancomycin-susceptible E. faecium (VSEfm) isolates belonging to ST117/CT24, as assessed by cgMLST, were retrospectively analysed. The isolates were collected from patients and environmental samples from 2011 to 2017, and their genomes were analysed using short-read sequencing. Pangenome analysis was performed on de novo assemblies, which were also screened for known predicted virulence factors, antimicrobial resistance genes, bacteriocins, and prophages. Two representative isolates were also sequenced using long-read sequencing, which allowed a detailed analysis of their plasmid content. Results: The cgMLST analysis showed that the isolates were closely related, with a minimal allelic difference of 10 between each cluster’s closest related isolates. The vanB-carrying transposon Tn1549 was present in all VREfm isolates. However, in our data, we observed independent acquisitions of this transposon. The pangenome analysis revealed differences in the accessory genes related to prophages and bacteriocins content, whilst a similar profile was observed for known predicted virulence and resistance genes. Conclusion: In the case of closely related isolates sharing a similar genetic background, a detailed analysis of MGEs and the integration point of the vanB-carrying transposon allow to increase the discriminatory power compared to the use of cgMLST alone. Thus, enabling the identification of epidemiological links amongst hospitalised patients.
Collapse
Affiliation(s)
- Paola Lisotto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.,IDbyDNA Inc., Salt Lake City, UT, United States
| | - Monika A Chlebowicz-Fliss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Almeida-Santos AC, Novais C, Peixe L, Freitas AR. Enterococcus spp. as a Producer and Target of Bacteriocins: A Double-Edged Sword in the Antimicrobial Resistance Crisis Context. Antibiotics (Basel) 2021; 10:antibiotics10101215. [PMID: 34680796 PMCID: PMC8532689 DOI: 10.3390/antibiotics10101215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/10/2023] Open
Abstract
Enterococcus spp. are one of the most frequent producers of bacteriocins (enterocins), which provides them with an advantage to compete in their natural environment, which is the gut of humans and many animals. The enterocins’ activity against microorganisms from different phylogenetic groups has raised interest in Enterococcus spp. in different contexts throughout the last decades, especially in the food industry. Nevertheless, some species can also cause opportunistic life-threatening infections and are frequently multidrug-resistant (MDR). Vancomycin-resistant Enterococcus (VRE), in particular, are an ongoing global challenge given the lack of therapeutic options. In this scenario, bacteriocins can offer a potential solution to this persistent threat, either alone or in combination with other antimicrobials. There are a handful of studies that demonstrate the advantages and applications of bacteriocins, especially against VRE. The purpose of this review is to present a current standpoint about the dual role of Enterococcus spp., from important producers to targets needed to be controlled, and the crucial role that enterocins may have in the expansion of enterococcal populations. Classification and distribution of enterocins, the current knowledge about the bacteriocinome of clinical enterococci, and the challenges of bacteriocin use in the fight against VRE infections are particularly detailed.
Collapse
Affiliation(s)
- Ana C. Almeida-Santos
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carla Novais
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luísa Peixe
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (L.P.); or (A.R.F.); Tel.: +351-220428580 (L.P. & A.R.F.)
| | - Ana R. Freitas
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- TOXRUN–Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: (L.P.); or (A.R.F.); Tel.: +351-220428580 (L.P. & A.R.F.)
| |
Collapse
|
10
|
Eichel V, Klein S, Bootsveld C, Frank U, Heeg K, Boutin S, Nurjadi D. Challenges in interpretation of WGS and epidemiological data to investigate nosocomial transmission of vancomycin-resistant Enterococcus faecium in an endemic region: incorporation of patient movement network and admission screening. J Antimicrob Chemother 2021; 75:1716-1721. [PMID: 32413123 PMCID: PMC7303815 DOI: 10.1093/jac/dkaa122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES VRE are listed, by the WHO, among the leading resistant pathogens causing greatest public concern; hence the spread and transmission of VRE, especially in hospitalized patients, need to be monitored. Despite the advancements in typing methods since the implementation of WGS for outbreak investigations, data interpretation, especially for vancomycin-resistant Enterococcus faecium (VREfm) in an endemic setting, remains challenging. In this study we explored the potential added benefit of incorporating patient movement data and admission screening to accurately estimate the magnitude of an outbreak. METHODS We sequenced 73 VREfm isolates from patients with bacteraemia (n = 43) and rectal colonization (n = 30/32). Genetic relatedness was determined by SNP distance (≤10) between isolates. Patient movements were visualized in a movement network, along with contact intensity and rectal colonization status prior to infection onset. RESULTS ST117, ST80 and ST203 were the predominant STs in our study population. Forty-four percent (18/41) of VREfm bacteraemia cases were of endogenous origin. SNP analysis of infection and colonization isolates revealed nine clonal groups. Eighty-six percent (37/43) of the patients were visualized in a transmission network due to spatiotemporal overlap. Nineteen out of 43 (44%) belonged to five transmission clusters. Incorporation of prior colonization status revealed that transmission was very likely in only 63% (12/19) of patients in these transmission clusters. DISCUSSION Although interpretation of WGS data is challenging, incorporation of patient movement data and colonization status by admission screening of high-risk patients may provide additional resolution when interpreting the magnitude of an outbreak in an endemic setting.
Collapse
Affiliation(s)
- Vanessa Eichel
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sabrina Klein
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Carolin Bootsveld
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Uwe Frank
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Zhou X, Willems RJL, Friedrich AW, Rossen JWA, Bathoorn E. Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob Resist Infect Control 2020; 9:130. [PMID: 32778149 PMCID: PMC7418317 DOI: 10.1186/s13756-020-00770-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Early in its evolution, Enterococcus faecium acquired traits that allowed it to become a successful nosocomial pathogen. E. faecium inherent tenacity to build resistance to antibiotics and environmental stressors that allows the species to thrive in hospital environments. The continual wide use of antibiotics in medicine has been an important driver in the evolution of E. faecium becoming a highly proficient hospital pathogen.For successful prevention and reduction of nosocomial infections with vancomycin resistant E. faecium (VREfm), it is essential to focus on reducing VREfm carriage and spread. The aim of this review is to incorporate microbiological insights of E. faecium into practical infection control recommendations, to reduce the spread of hospital-acquired VREfm (carriage and infections). The spread of VREfm can be controlled by intensified cleaning procedures, antibiotic stewardship, rapid screening of VREfm carriage focused on high-risk populations, and identification of transmission routes through accurate detection and typing methods in outbreak situations. Further, for successful management of E. faecium, continual innovation in the fields of diagnostics, treatment, and eradication is necessary.
Collapse
Affiliation(s)
- Xuewei Zhou
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Weber A, Maechler F, Schwab F, Gastmeier P, Kola A. Increase of vancomycin-resistant Enterococcus faecium strain type ST117 CT71 at Charité - Universitätsmedizin Berlin, 2008 to 2018. Antimicrob Resist Infect Control 2020; 9:109. [PMID: 32678047 PMCID: PMC7364619 DOI: 10.1186/s13756-020-00754-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In addition to an overall rise in vancomycin-resistant Enterococcus faecium (VREfm), an increase in certain strain types marked by sequence type (ST) and cluster type (CT) has been reported in Germany over the past few years. Outbreak analyses at Charité - Universitätsmedizin Berlin revealed the frequent occurrence of VREfm ST117 CT71 isolates in 2017 and 2018. To investigate whether ST117 CT71 have emerged in recent years or whether these strains have been circulating for a longer time, we retrospectively analyzed non-outbreak strains that occurred between 2008 and 2018 to identify frequent STs and CTs. METHODS In total, 120 VREfm isolates obtained from clinical and surveillance cultures from the years 2008, 2013, 2015, and 2018 were analyzed. Thirty isolates per year comprising the first 7-8 non-outbreak isolates of each quarter of the respective year were sequenced using whole genome sequencing. MLST and cgMLST were determined as well as resistance genes and virulence factors. Risk factors for VREfm ST117 were analyzed in a multivariable analysis with patient characteristics as possible confounders. RESULTS The percentage of VREfm of type ST117 increased from 17% in 2008 to 57% in 2018 (p = 0.012). In 2008, vanA genotype accounted for 80% of all ST117 isolates compared to 6% in 2018. VanB CT71 first appeared in 2018 and predominated over all other ST117 at 43% (p < 0.0001). The set of resistance genes (msrC, efmA, erm(B), dfrG, aac(6')-Ii, gyrA, parC and pbp5) and virulence factors (acm, esp, hylEfm, ecbA and sgrA) in CT71 was also found in other ST117 non-CT71 strains, mainly in CT36. The study population did not differ among the different calendar years analyzed in terms of age, gender, length of stay, or ward type (each p > 0.2). CONCLUSION This study revealed an increase in ST117 strains from 2008 to 2018, accompanied by a shift toward CT71 strains with the vanB genotype in 2018. We did not detect resistance or virulence traits in CT71 that could confer survival advantage compared to other CTs among ST117 strains. To date, it is not clear why ST117 and in particular strain type ST117 CT71 predominates over other strains.
Collapse
Affiliation(s)
- Anna Weber
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
| | - Friederike Maechler
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
| | - Frank Schwab
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
| | - Axel Kola
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
| |
Collapse
|
13
|
Aktas G. In vitro efficacy of vancomycin combined with fosfomycin against Vancomycin-Resistant Enterococci strains. Pak J Med Sci 2020; 36:281-285. [PMID: 32063975 PMCID: PMC6994910 DOI: 10.12669/pjms.36.2.1347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Enterococci have been isolated frequently worldwide and have difficulties in the treatment. Combination antibiotherapies have a distinct advantage over monotherapies in terms of their synergistic effect. In the study, it was aimed to investigate in vitro activity of vancomycin combined with fosfomycin against VRE strains. Methods: A total of 30 VRE strains were included in the study. Bacterial identifications of the strains were undertaken using conventional routine methods. The resistance to agents tested was investigated by using the broth microdilution method. Glucose-6-phosphate (25 mcg/mL) for fosfomycin were used in all experiments. The activity of antibiotics in combination was assessed using a broth microcheckerboard. The fractional inhibitory concentration index (FICI) was interpreted as follows: synergism, FICI ≤0.5. Additionally, two strains in 30 VRE were studied to determine the time-kill curves to verify the synergistic results. For each strain, antibiotics were studied alone and in combination at the minimum inhibitory concentration (1xMIC) values. Results: Susceptibility rate to fosfomycin was found at 26.6 % (8/30). The MIC50, MIC90 and MIC interval values of antimicrobials were 512, 512, and 512 - 1024 mcg/mL for vancomycin, and 128, 160, and 64 - 224 mcg/mL for fosfomycin, respectively. The rate of synergism was found as 100 % by both checkerboard and time-kill methods. Conclusion: The result shows that the combination of vancomycin with fosfomycin could be an alternative in the treatment of infections caused by VRE.
Collapse
Affiliation(s)
- Gulseren Aktas
- Gulseren Aktas Ph.D. Department of Medical Microbiology, Faculty of Medicine, Istanbul University, Istanbul-Turkey
| |
Collapse
|
14
|
Ravi A, Halstead FD, Bamford A, Casey A, Thomson NM, van Schaik W, Snelson C, Goulden R, Foster-Nyarko E, Savva GM, Whitehouse T, Pallen MJ, Oppenheim BA. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microb Genom 2019; 5. [PMID: 31526447 PMCID: PMC6807385 DOI: 10.1099/mgen.0.000293] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among long-stay critically ill patients in the adult intensive care unit (ICU), there are often marked changes in the complexity of the gut microbiota. However, it remains unclear whether such patients might benefit from enhanced surveillance or from interventions targeting the gut microbiota or the pathogens therein. We therefore undertook a prospective observational study of 24 ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Two-thirds of the patients experienced a marked drop in gut microbial diversity (to an inverse Simpson’s index of <4) at some stage during their stay in the ICU, often accompanied by the absence or loss of potentially beneficial bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but the administration of other antibiotics, including piperacillin/tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three-quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium. In some patients, we also saw an increase in the relative abundance of apparent commensal organisms in the gut microbiome, including the archaeal species Methanobrevibacter smithii. In conclusion, we have documented a dramatic absence of microbial diversity and pathogen domination of the gut microbiota in a high proportion of critically ill patients using shotgun metagenomics.
Collapse
Affiliation(s)
- Anuradha Ravi
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Fenella D Halstead
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Amy Bamford
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Anna Casey
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Nicholas M Thomson
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Catherine Snelson
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | | | | | - George M Savva
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Tony Whitehouse
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Mark J Pallen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK.,School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK
| | - Beryl A Oppenheim
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| |
Collapse
|
15
|
Kerschner H, Cabal A, Hartl R, Machherndl-Spandl S, Allerberger F, Ruppitsch W, Apfalter P. Hospital outbreak caused by linezolid resistant Enterococcus faecium in Upper Austria. Antimicrob Resist Infect Control 2019; 8:150. [PMID: 31516698 PMCID: PMC6732827 DOI: 10.1186/s13756-019-0598-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Enterococcus faecium is part of the human gastrointestinal flora but may act as opportunistic pathogen. Environmental persistence, high colonization capability and diverse intrinsic and acquired resistance mechanisms make it especially successful in nosocomial high-risk settings. In March 2014, an outbreak of Linezolid resistant Enterococcus faecium (LREfm) was observed at the hematooncology department of a tertiary care center in Upper Austria. Methods We report on the outbreak investigation together with the whole genome sequencing (WGS)-based typing results including also non-outbreak LREfm and susceptible isolates. Results The 54 investigated isolates could be divided in six clusters based on cgMLST. Cluster one comprised LREfm isolates of genotype ST117 and CT24, which was identified as the causative clone of the outbreak. In addition, the detection of four other clusters comprising isolates originating from hematooncology patients but also at other hospitals, pointed to LREfm transmission between local healthcare facilities. LREfm patients (n = 36) were typically at risk for acquisition of nosocomial pathogens because of immunosuppression, frequent hospitalization and antibiotic therapies. Seven of these 36 patients developed LREfm infection but were successfully treated. After termination of the initial outbreak, sporadic cases occurred despite a bundle of applied outbreak control interventions. Conclusions WGS proved to be an effective tool to differentiate several LREfm clusters in an outbreak. Active screening for LREfm is important in a high-risk setting such as hematooncology, where multiple introductions are possible and occur despite intensified infection control measures. Electronic supplementary material The online version of this article (10.1186/s13756-019-0598-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidrun Kerschner
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Fadingerstrasse 1, 4020 Linz, Austria
| | - Adriana Cabal
- AGES - Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Waehringerstrasse 25a, 1090 Vienna, Austria.,3European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Rainer Hartl
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Fadingerstrasse 1, 4020 Linz, Austria
| | - Sigrid Machherndl-Spandl
- Department of Internal Medicine 1, Ordensklinikum Linz Elisabethinen, Fadingerstrasse 1, 4020 Linz, Austria
| | - Franz Allerberger
- AGES - Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Waehringerstrasse 25a, 1090 Vienna, Austria
| | - Werner Ruppitsch
- AGES - Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Waehringerstrasse 25a, 1090 Vienna, Austria
| | - Petra Apfalter
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Fadingerstrasse 1, 4020 Linz, Austria
| |
Collapse
|