1
|
Shrivastava-Ranjan P, Jain S, Chatterjee P, Montgomery JM, Flint M, Albariño C, Spiropoulou CF. Development of a novel minigenome and recombinant VSV expressing Seoul hantavirus glycoprotein-based assays to identify anti-hantavirus therapeutics. Antiviral Res 2023; 214:105619. [PMID: 37142192 DOI: 10.1016/j.antiviral.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Seoul virus (SEOV) is an emerging global health threat that can cause hemorrhagic fever with renal syndrome (HFRS), which results in case fatality rates of ∼2%. There are no approved treatments for SEOV infections. We developed a cell-based assay system to identify potential antiviral compounds for SEOV and generated additional assays to characterize the mode of action of any promising antivirals. To test if candidate antivirals targeted SEOV glycoprotein-mediated entry, we developed a recombinant reporter vesicular stomatitis virus expressing SEOV glycoproteins. To facilitate the identification of candidate antiviral compounds targeting viral transcription/replication, we successfully generated the first reported minigenome system for SEOV. This SEOV minigenome (SEOV-MG) screening assay will also serve as a prototype assay for discovery of small molecules inhibiting replication of other hantaviruses, including Andes and Sin Nombre viruses. Ours is a proof-of-concept study in which we tested several compounds previously reported to have activity against other negative-strand RNA viruses using our newly developed hantavirus antiviral screening systems. These systems can be used under lower biocontainment conditions than those needed for infectious viruses, and identified several compounds with robust anti-SEOV activity. Our findings have important implications for the development of anti-hantavirus therapeutics.
Collapse
Affiliation(s)
- Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Shilpi Jain
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - César Albariño
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
2
|
Kitaura S, Tobiume M, Kawahara M, Satoh M, Kato H, Nakayama N, Nakajima N, Komeno T, Furuta Y, Suzuki T, Moriya K, Saijo M, Ebihara H, Ito-Takayama M. Evaluation of a novel severe combined immunodeficiency mouse model for antiviral drug evaluation against Chandipura virus infection. Antiviral Res 2023; 213:105582. [PMID: 36948302 DOI: 10.1016/j.antiviral.2023.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Chandipura virus (CHPV) is a negative-sense single-stranded RNA virus known to cause fatal encephalitis outbreaks in the Indian subcontinent. The virus displays tropism towards the pediatric population and holds significant public health concerns. Currently, there is no specific, effective therapy for CHPV encephalitis. In this study, we evaluated a novel C.B-17 severe combined immunodeficiency (SCID) mouse model which can be used for pre-clinical antiviral evaluation. Inoculation of CHPV developed a lethal infection in our model. Plaque assay and immunohistochemistry detected increased viral loads and antigens in various organs, including the brain, spinal cord, adrenal glands, and whole blood. We further conducted a proof-of-concept evaluation of favipiravir in the SCID mouse model. Favipiravir treatment improved survival with pre-symptomatic (days 5-14) and post-symptomatic (days 9-18) treatment. Reduced viral loads were observed in whole blood, kidney/adrenal gland, and brain tissue with favipiravir treatment. The findings in this study demonstrate the utility of SCID mouse for in vivo drug efficacy evaluation and the potential efficacy of favipiravir against CHPV infection.
Collapse
Affiliation(s)
- Satoshi Kitaura
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Internal Medicine, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kawahara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaaki Satoh
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Kato
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Mutsuyo Ito-Takayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
3
|
Bhagat S, Yadav N, Shah J, Dave H, Swaraj S, Tripathi S, Singh S. Novel corona virus (COVID-19) pandemic: current status and possible strategies for detection and treatment of the disease. Expert Rev Anti Infect Ther 2020; 20:1275-1298. [PMID: 33043740 DOI: 10.1080/14787210.2021.1835469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In December 2019, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak occurred and caused the coronavirus disease of 2019 (COVID-19), which affected ~ 190 countries. The World Health Organization (WHO) has declared COVID-19 a pandemic on 11 March 2020. AREA COVERED In the review, a comprehensive analysis of the recent developments of the COVID-19 pandemic has been provided, including the structural characterization of the virus, the current worldwide status of the disease, various detection strategies, drugs recommended for the effective treatment, and progress of vaccine development programs by different countries. This report was constructed by following a systematic literature search of bibliographic databases of published reports of relevance until 1 September 2020. EXPERT OPINION Currently, the countries are opening businesses despite a spike in the number of COVID-19 cases. The pharmaceutical industries are developing clinical diagnostic kits, medicines, and vaccines. They target different approaches, including repurposing the already approved diagnosis and treatment options for similar CoVs. At present, over ~200 vaccine candidates are being developed against COVID-19. Future research may unravel the genetic variations or polymorphisms that dictate these differences in susceptibilities to the disease.
Collapse
Affiliation(s)
- Stuti Bhagat
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Nisha Yadav
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Juhi Shah
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Harsh Dave
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Shachee Swaraj
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| |
Collapse
|
4
|
Hushmandi K, Bokaie S, Hashemi M, Moghadam ER, Raei M, Hashemi F, Bagheri M, Habtemariam S, Nabavi SM. A review of medications used to control and improve the signs and symptoms of COVID-19 patients. Eur J Pharmacol 2020; 887:173568. [PMID: 32956644 PMCID: PMC7501068 DOI: 10.1016/j.ejphar.2020.173568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
In December 2019, an unprecedented outbreak of pneumonia associated with a novel coronavirus disease 2019 (COVID-19) emerged in Wuhan City, Hubei province, China. The virus that caused the disease was officially named by the World Health Organization (WHO) as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the high transmission rate of SARS-CoV-2, it became a global pandemic and public health emergency within few months. Since SARS-CoV-2 is genetically 80% homologous with the SARS-CoVs family, it is hypothesized that medications developed for the treatment of SARS-CoVs may be useful in the control and management of SARS-CoV-2. In this regard, some medication being tested in clinical trials and in vitro studies include anti-viral RNA polymerase inhibitors, HIV-protease inhibitors, anti-inflammatory agents, angiotensin converting enzyme type 2 (ACE 2) blockers, and some other novel medications. In this communication, we reviewed the general characteristics of medications, medical usage, mechanism of action, as well as SARS-CoV-2 related trials.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Farid Hashemi
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Bagheri
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, United Kingdom
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhao L, Che J, Zhang Q, Li Y, Guo X, Chen L, Li H, Cao R, Li X. Identification of Novel Influenza Polymerase PB2 Inhibitors Using a Cascade Docking Virtual Screening Approach. Molecules 2020; 25:molecules25225291. [PMID: 33202790 PMCID: PMC7697191 DOI: 10.3390/molecules25225291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
To discover novel inhibitors that target the influenza polymerase basic protein 2 (PB2) cap-binding domain (CBD), commercial ChemBridge compound libraries containing 384,796 compounds were screened using a cascade docking of LibDock-LigandFit-GOLD, and 60 compounds were selected for testing with cytopathic effect (CPE) inhibition assays and surface plasmon resonance (SPR) assay. Ten compounds were identified to rescue cells from H1N1 virus-mediated death at non-cytotoxic concentrations with EC50 values ranging from 0.30 to 67.65 μM and could bind to the PB2 CBD of H1N1 with Kd values ranging from 0.21 to 6.77 μM. Among these, four compounds (11D4, 12C5, 21A5, and 21B1) showed inhibition of a broad spectrum of influenza virus strains, including oseltamivir-resistant ones, the PR/8-R292K mutant (H1N1, recombinant oseltamivir-resistant strain), the PR/8-I38T mutant (H1N1, recombinant baloxavir-resistant strain), and the influenza B/Lee/40 virus strain. These compounds have novel chemical scaffolds and relatively small molecular weights and are suitable for optimization as lead compounds. Based on sequence and structure comparisons of PB2 CBDs of various influenza virus subtypes, we propose that the Phe323/Gln325, Asn429/Ser431, and Arg355/Gly357 mutations, particularly the Arg355/Gly357 mutation, have a marked impact on the selectivities of PB2 CBD-targeted inhibitors of influenza A and influenza B.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (L.Z.); (J.C.); (X.G.)
| | - Jinjing Che
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (L.Z.); (J.C.); (X.G.)
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Yiming Li
- West China School of Medical, Sichuan University, Chengdu 610041, China;
| | - Xiaojia Guo
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (L.Z.); (J.C.); (X.G.)
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (L.C.); (H.L.); (R.C.); (X.L.); Tel.: +86-024-23986515 (L.C.); +86-27-83692762 (H.L.); +86-10-66930673-717(R.C.); +86-10-66930634 (X.L.)
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (L.C.); (H.L.); (R.C.); (X.L.); Tel.: +86-024-23986515 (L.C.); +86-27-83692762 (H.L.); +86-10-66930673-717(R.C.); +86-10-66930634 (X.L.)
| | - Ruiyuan Cao
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (L.Z.); (J.C.); (X.G.)
- Correspondence: (L.C.); (H.L.); (R.C.); (X.L.); Tel.: +86-024-23986515 (L.C.); +86-27-83692762 (H.L.); +86-10-66930673-717(R.C.); +86-10-66930634 (X.L.)
| | - Xingzhou Li
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (L.Z.); (J.C.); (X.G.)
- Correspondence: (L.C.); (H.L.); (R.C.); (X.L.); Tel.: +86-024-23986515 (L.C.); +86-27-83692762 (H.L.); +86-10-66930673-717(R.C.); +86-10-66930634 (X.L.)
| |
Collapse
|
6
|
Fang QQ, Huang WJ, Li XY, Cheng YH, Tan MJ, Liu J, Wei HJ, Meng Y, Wang DY. Effectiveness of favipiravir (T-705) against wild-type and oseltamivir-resistant influenza B virus in mice. Virology 2020; 545:1-9. [PMID: 32174453 DOI: 10.1016/j.virol.2020.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
The emergence of resistant mutants to the wildly used neuraminidase inhibitors (NAIs) makes the development of novel drugs necessary. Favipiravir (T-705) is one of the RNA-dependent RNA polymerase (RdRp) inhibitors developed in recent years. To examine the efficacy of T-705 against influenza B virus infections in vivo, C57BL/6 mice infected with wild-type or oseltamivir-resistant influenza B/Memphis/20/96 viruses were treated with T-705. Starting 2 h post inoculation (hpi), T-705 was orally administered to mice BID at dosages of 50, 150, or 300 mg/kg/day for 5 days. Oseltamivir was used as control. Here, we showed that T-705 protected mice from lethal infection in a dose-dependent manner. T-705 administration also significantly reduced viral loads and suppressed pulmonary pathology. In addition, phenotypic assays demonstrated that no T-705-resistant viruses emerged after T-705 treatment. In conclusion, T-705 can be effective to protect mice from lethal infection with both wild-type and oseltamivir-resistant influenza B viruses.
Collapse
Affiliation(s)
- Qiong-Qiong Fang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China.
| | - Wei-Juan Huang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Xi-Yan Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Yan-Hui Cheng
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Min-Ju Tan
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Jia Liu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - He-Jiang Wei
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China
| | - Yao Meng
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, 710054, China
| | - Da-Yan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Reference and Research on Influenza, Beijing, 102206, China.
| |
Collapse
|