1
|
Al-Marzooq F, Ghazawi A, Allam M, Collyns T, Saleem A. Novel Variant of New Delhi Metallo-Beta-Lactamase ( blaNDM-60) Discovered in a Clinical Strain of Escherichia coli from the United Arab Emirates: An Emerging Challenge in Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:1158. [PMID: 39766548 PMCID: PMC11672588 DOI: 10.3390/antibiotics13121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Carbapenem resistance poses a significant health threat. This study reports the first detection and characterization of a novel variant of New Delhi metallo-β-lactamase (blaNDM-60) in Escherichia coli from the United Arab Emirates (UAE), including its genetic context and relationship to global strains. Methods: NDM-60-producing E. coli was isolated from a rectal swab during routine screening. Characterization involved whole-genome sequencing, antimicrobial susceptibility testing, and comparative genomic analysis with 66 known NDM variants. Core genome analysis was performed against 42 global E. coli strains, including the single other reported NDM-60-positive isolate. Results: The strain demonstrated extensive drug resistance, including resistance to novel β-lactam/β-lactamase inhibitor combinations, notably taniborbactam. NDM-60 differs from the closely related NDM-5 by a single amino acid substitution (Asp202Asn) and two amino acid substitutions (Val88Leu and Met154Leu) compared to NDM-1. NDM-60 is located on a nonconjugative IncX3 plasmid. The strain belongs to sequence type 940 (ST940). Phylogenetic analysis revealed high diversity among the global ST940 strains, which carry a plethora of resistance genes and originated from humans, animals, and the environment from diverse geographic locations. Conclusions: NDM-60 emergence in the UAE represents a significant evolution in carbapenemase diversity. Its presence on a nonconjugative plasmid may limit spread; however, its extensive resistance profile is concerning. Further studies are needed to determine the prevalence, dissemination, and clinical impact of NDM-60. NDM evolution underscores the ongoing challenge in managing antimicrobial resistance and the critical importance of vigilant molecular surveillance. It also highlights the pressing demand to discover new antibiotics to fight resistant bacteria.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | | | - Aqeel Saleem
- Tawam Hospital, Al Ain P.O. Box 5674, United Arab Emirates
| |
Collapse
|
2
|
Quan J, Hu H, Zhang H, Meng Y, Liao W, Zhou J, Han X, Shi Q, Zhao D, Wang Q, Jiang Y, Yu Y. Investigating Possible Interspecies Communication of Plasmids Associated with Transfer of Third-Generation Cephalosporin, Quinolone, and Colistin Resistance Between Simultaneously Isolated Escherichia Coli and Klebsiella Pneumoniae. Microbiol Spectr 2023; 11:e0355422. [PMID: 37125932 PMCID: PMC10269620 DOI: 10.1128/spectrum.03554-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The coinfection process producing multiple species of pathogens provides a specific ecological niche for the exchange of genetic materials between pathogens, in which plasmids play a vital role in horizontal gene transfer, especially for drug resistance, but the underlying transfer pathway remains unclear. Interspecies communication of the plasmids associated with the transfer of third-generation cephalosporins, quinolones, and colistin resistance has been observed in simultaneously isolated Escherichia coli and Klebsiella pneumoniae from abdominal drainage following surgery. The MICs of antimicrobial agents were determined by the broth microdilution method. The complete chromosome and plasmid sequences were obtained by combining Illumina paired-end short reads and MinION long reads. S1-PFGE, southern blot analysis and conjugation assay confirmed the transferability of the mcr-1-harboring plasmid. Both the E. coli isolate EC15255 and K. pneumoniae isolate KP15255 from the same specimen presented multidrug resistance. Each of them harbored one chromosome and three plasmids, and two plasmids and their mediated resistance could be transferred to the recipient by conjugation. Comparison of their genome sequences suggested that several genetic communication events occurred between species, especially among their plasmids, such as whole-plasmid transfer, insertion, deletion, amplification, or inversion. Exchange of plasmids or the genetic elements they harbor plays a critical role in antimicrobial resistance gene transmission and poses a substantial threat to nosocomial infection control, necessitating the continued surveillance of multidrug resistant pathogens, especially during coinfection. IMPORTANCE The genome sequence of bacterial pathogens commonly provides a detailed clue of genetic communication among clones or even distinct species. The intestinal microecological environment is a representative ecological niche for genetic communication. However, it is still difficult to describe the details of horizontal gene transfer or other genetic events within them because the evidence in the genome sequence is incomplete and limited. In this study, the simultaneously isolated Escherichia coli and Klebsiella pneumoniae from a coinfection process provided an excellent example for observation of interspecies communication between the two genomes and the plasmids they harbor. A complete genome sequence acquired by combining the Illumina and MinION sequencing platforms facilitated the understanding of genetic communication events, such as whole-plasmid transfer, insertion, deletion, amplification, or inversion, which contribute to antimicrobial resistance gene transmission and are a substantial threat to nosocomial infection control.
Collapse
Affiliation(s)
- Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huangdu Hu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huichuan Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering
- Department of Infectious Diseases, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yan Meng
- Department of Clinical Laboratory, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weichao Liao
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Wang
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Kessler C, Hou J, Neo O, Buckner MMC. In situ, in vivo, and in vitro approaches for studying AMR plasmid conjugation in the gut microbiome. FEMS Microbiol Rev 2022; 47:6807411. [PMID: 36341518 PMCID: PMC9841969 DOI: 10.1093/femsre/fuac044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global threat, with evolution and spread of resistance to frontline antibiotics outpacing the development of novel treatments. The spread of AMR is perpetuated by transfer of antimicrobial resistance genes (ARGs) between bacteria, notably those encoded by conjugative plasmids. The human gut microbiome is a known 'melting pot' for plasmid conjugation, with ARG transfer in this environment widely documented. There is a need to better understand the factors affecting the incidence of these transfer events, and to investigate methods of potentially counteracting the spread of ARGs. This review describes the use and potential of three approaches to studying conjugation in the human gut: observation of in situ events in hospitalized patients, modelling of the microbiome in vivo predominantly in rodent models, and the use of in vitro models of various complexities. Each has brought unique insights to our understanding of conjugation in the gut. The use and development of these systems, and combinations thereof, will be pivotal in better understanding the significance, prevalence, and manipulability of horizontal gene transfer in the gut microbiome.
Collapse
Affiliation(s)
- Celia Kessler
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Jingping Hou
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Onalenna Neo
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Michelle M C Buckner
- Corresponding author: Biosciences Building, University Road West, University of Birmingham, Birmingham B15 2TT, United Kingdom. Tel: +44 (0)121 415 8758; E-mail:
| |
Collapse
|
4
|
Hobson CA, Vigue L, Naimi S, Chassaing B, Magnan M, Bonacorsi S, Gachet B, El Meouche I, Birgy A, Tenaillon O. MiniBioReactor Array (MBRA) in vitro gut model: a reliable system to study microbiota-dependent response to antibiotic treatment. JAC Antimicrob Resist 2022; 4:dlac077. [PMID: 35795241 PMCID: PMC9252984 DOI: 10.1093/jacamr/dlac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Antimicrobial drugs are mostly studied for their impact on emergence of bacterial antibiotic resistance, but their impact on the gut microbiota is also of tremendous interest. In vitro gut models are important tools to study such complex drug–microbiota interactions in humans. Methods The MiniBioReactor Array (MBRA) in vitro microbiota system; a single-stage continuous flow culture model, hosted in an anaerobic chamber; was used to evaluate the impact of three concentrations of a third-generation cephalosporin (ceftriaxone) on faecal microbiota from two healthy donors (treatment versus control: three replicates per condition). We conducted 16S microbiome profiling and analysed microbial richness, diversity and taxonomic changes. β-Lactamase activities were evaluated and correlated with the effects observed in the MBRA in vitro system. Results The MBRA preserved each donor’s specificities, and differences between the donors were maintained through time. Before treatment, all faecal cultures belonging to the same donor were comparable in composition, richness, and diversity. Treatment with ceftriaxone was associated with a decrease in α-diversity, and an increase in β-diversity index, in a concentration-dependent manner. The maximum effect on diversity was observed after 72 h of treatment. Importantly, one donor had a stronger microbiota β-lactamase activity that was associated with a reduced impact of ceftriaxone on microbiota composition. Conclusions MBRA can reliably mimic the intestinal microbiota and its modifications under antibiotic selective pressure. The impact of the treatment was donor- and concentration-dependent. We hypothesize these results could be explained, at least in part, by the differences in β-lactamase activity of the microbiota itself. Our results support the relevance and promise of the MBRA system to study drug–microbiota interactions.
Collapse
Affiliation(s)
- C A Hobson
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - L Vigue
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - S Naimi
- INSERM U1016, Team ‘Mucosal Microbiota in Chronic Inflammatory diseases’, CNRS UMR 8104, Université de Paris , Paris , France
| | - B Chassaing
- INSERM U1016, Team ‘Mucosal Microbiota in Chronic Inflammatory diseases’, CNRS UMR 8104, Université de Paris , Paris , France
| | - M Magnan
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - S Bonacorsi
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP , 75019 Paris , France
| | - B Gachet
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - I El Meouche
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - A Birgy
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP , 75019 Paris , France
| | - O Tenaillon
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| |
Collapse
|
5
|
Ott LC, Mellata M. Models for Gut-Mediated Horizontal Gene Transfer by Bacterial Plasmid Conjugation. Front Microbiol 2022; 13:891548. [PMID: 35847067 PMCID: PMC9280185 DOI: 10.3389/fmicb.2022.891548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of new antimicrobial resistant and virulent bacterial strains may pose a threat to human and animal health. Bacterial plasmid conjugation is a significant contributor to rapid microbial evolutions that results in the emergence and spread of antimicrobial resistance (AR). The gut of animals is believed to be a potent reservoir for the spread of AR and virulence genes through the horizontal exchange of mobile genetic elements such as plasmids. The study of the plasmid transfer process in the complex gut environment is limited due to the confounding factors that affect colonization, persistence, and plasmid conjugation. Furthermore, study of plasmid transfer in the gut of humans is limited to observational studies, leading to the need to identify alternate models that provide insight into the factors regulating conjugation in the gut. This review discusses key studies on the current models for in silico, in vitro, and in vivo modeling of bacterial conjugation, and their ability to reflect the gut of animals. We particularly emphasize the use of computational and in vitro models that may approximate aspects of the gut, as well as animal models that represent in vivo conditions to a greater extent. Directions on future research studies in the field are provided.
Collapse
Affiliation(s)
- Logan C. Ott
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Yin C, Yang W, Lv Y, Zhao P, Wang J. Clonal spread of carbapenemase-producing Enterobacteriaceae in a region, China. BMC Microbiol 2022; 22:81. [PMID: 35350977 PMCID: PMC8962535 DOI: 10.1186/s12866-022-02497-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background The increasing number of carbapenemase-producing Enterobacterales (CPE) has become a serious problem globally. This study aimed to elucidate their geographically epidemiological characteristics. Methods Resistance genes were identified by polymerase chain reaction (PCR) and sequencing. Bacterial genotyping was studied using multilocus sequence typing (MLST) and wzi typing. The transferability of carbapenemase genes was determined by a broth mating method. The relationships between the rates of antimicrobial consumption and the prevalence of CRE were performed by Pearson's or Spearman's correlation analyses. Results A total of 930 phenotypically confirmed carbapenem-resistant Enterobacterales (CRE) isolates collected from 19 hospitals were genotypically characterized. K. pneumoniae (KP) and E. coli isolates were 785 (85.14%) and 96 (10.41%) among 922 CPE isolates. Two major carbapenemase genes blaKPC-2 and blaNDM in CPE isolates accounted for 84.6% (n = 780) and 13.77% (n = 127). ST11 comprised 86.83% (633/729) of KPC-2 KP isolates. Different combinations of extended spectrum-β-lactamase (ESBL) genes of blaSHV, blaCTX, and blaTEM were found in KPC-2 producing KP isolates, and blaCTM-M-14/15, blaSHV-11/12 and blaTEM-1 were common ESBL genotypes. The wzi typing method could further subdivide ST11 KP group into at least five subgroups, among which wzi209 (69.83%, 442/633) was the most frequently isolated, followed by wzi141 (25.28%, 160/633). Conjugation assays showed that high conjugation rates were observed in CPE (15.24%, 32/210) for NDM plasmids, but relatively low (8.1%, 17/210) for KPC-2 plasmids. Different STs, different wzis and temperature could influence plasmid conjugation efficiency. No associations between the rates of antibiotics consumption and CPE prevalence were observed. The number of intra-hospital and inter-hospital transfers of CPE patients increased gradually from 18 (17.82%, 101) and 12 (11.88%, 101) in 2015 to 63 (30.73%, 205) and 51 (24.88%, 205) in 2018 (p = 0.016 and p = 0.008), respectively. Evidence-based measures could effectively reduce the prevalence of ST11-wzi209 clone but failed to control the dissemination of ST11-wzi141 KP clone. Conclusions Clonal spread of CPE, especially KPC-2 ST11 KP was the key factor contributing to the CPE increase in the region. Continued vigilance for the importations should be maintained. Coordinated regional interventions are urgently needed to reduce CPE threat.
Collapse
|
7
|
Buckley AM, Moura IB, Wilcox MH. The potential of microbiome replacement therapies for Clostridium difficile infection. Curr Opin Gastroenterol 2022; 38:1-6. [PMID: 34871192 DOI: 10.1097/mog.0000000000000800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW There is a paradox when treating Clostridium difficile infection (CDI); treatment antibiotics reduce C. difficile colonization but cause further microbiota disruption and can lead to recurrent disease. The success of faecal microbiota transplants (FMT) in treating CDI has become a new research area in microbiome restorative therapies but are they a viable long-term treatment option? RECENT FINDINGS C. difficile displays metabolic flexibility to use different nutritional sources during CDI. Using microbiome therapies for the efficient restoration of bile homeostasis and to reduce the bioavailability of preferential nutrients will target the germination ability of C. difficile spores and the growth rate of vegetative cells. Several biotechnology companies have developed microbiome therapeutics for treating CDI, which are undergoing clinical trials. SUMMARY There is confidence in using restorative microbiome therapies for treating CDI after the demonstrated efficacy of FMT, where several biotechnology companies are aiming to supply what would be a 'first in class' treatment option. Efficient removal of C. difficile from the different intestinal biogeographies should be considered in future microbiome therapies. With the gut microbiota implicated in different diseases, more work is needed to assess the long-term consequences of microbiome therapies.
Collapse
Affiliation(s)
- Anthony M Buckley
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health
- Microbiome and Nutritional Science Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds
| | - Ines B Moura
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health
| | - Mark H Wilcox
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health
- Microbiology, Leeds Teaching Hospital NHS Trust, Old Medical School, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
8
|
Buckley AM, Moura IB, Altringham J, Ewin D, Clark E, Bentley K, Wilkinson V, Spittal W, Davis G, Wilcox MH. The use of first-generation cephalosporin antibiotics, cefalexin and cefradine, is not associated with induction of simulated Clostridioides difficile infection. J Antimicrob Chemother 2021; 77:148-154. [PMID: 34561709 PMCID: PMC8730689 DOI: 10.1093/jac/dkab349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/23/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES The use of broad-spectrum cephalosporins is associated with induction of Clostridioides difficile infection (CDI). Recent knowledge on the importance of the healthy microbiota in preventing pathogen colonization/outgrowth highlights the caution needed when prescribing broad-spectrum antibiotics. The use of historical narrow-spectrum antibiotics, such as first-generation cephalosporins, is gaining increased attention once more as they have a reduced impact on the microbiota whilst treating infections. Here, the effects of two first-generation cephalosporins, compared with a third-generation cephalosporin, on the human microbiota were investigated and their propensity to induce simulated CDI. METHODS Three in vitro chemostat models, which simulate the physiochemical conditions of the human colon, were seeded with a human faecal slurry and instilled with either narrow-spectrum cephalosporins, cefalexin and cefradine, or a broad-spectrum cephalosporin, ceftriaxone, at concentrations reflective of colonic levels. RESULTS Instillation of cefalexin was associated with reduced recoveries of Bifidobacterium and Enterobacteriaceae; however, Clostridium spp. recoveries remained unaffected. Cefradine exposure was associated with decreased recoveries of Bifidobacterium spp., Bacteroides spp. and Enterobacteriaceae. These changes were not associated with induction of CDI, as we observed a lack of C. difficile spore germination/proliferation, thus no toxin was detected. This is in contrast to a model exposed to ceftriaxone, where CDI was observed. CONCLUSIONS These model data suggest that the minimal impact of first-generation cephalosporins, namely cefalexin and cefradine, on the intestinal microbiota results in a low propensity to induce CDI.
Collapse
Affiliation(s)
- Anthony M Buckley
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Ines B Moura
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - James Altringham
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Duncan Ewin
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Emma Clark
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Karen Bentley
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Vikki Wilkinson
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - William Spittal
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Georgina Davis
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
| | - Mark H Wilcox
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 9JT, UK
- Microbiology, Leeds Teaching Hospitals NHS Trust, Old Medical School, Leeds General Infirmary, Leeds, LS1 3EX, UK
| |
Collapse
|
9
|
Ding C, Ma J, Jiang W, Zhao H, Shi M, Cui G, Yan T, Wang Q, Li J, Qiu Z. Chironomidae larvae: A neglected enricher of antibiotic resistance genes in the food chain of freshwater environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117486. [PMID: 34098457 DOI: 10.1016/j.envpol.2021.117486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Infection caused by pathogenic bacteria carrying antibiotic resistance genes (ARGs) is a serious challenge to human health. Water environment, including water and surface sediments, is an important repository of ARGs, and the activity of aquatic animal can affect the development of ARG pollution in the water environment. Macrobenthic invertebrates are an important component of aquatic ecosystems, and their effects on ARG development in aquatic environments remain unreported. The distribution of ARGs, including tetA gene, sul2 gene, and kan gene, in Chironomidae larvae is demonstrated in this study for the first time. The ARG distribution was related to sampling points, metal elements, and seasons. Animal models demonstrated that Chironomidae larvae enriched ARGs from water and passed them on to downstream predators in the food chain. Conjugative transfer mediated by resistant plasmids was crucial in the spread of ARG in Chironomidae larvae, and upregulated expression of trfAp gene and trbBp gene was the molecular mechanism. Escherichia in Proteobacteria and Flavobacterium in Bacteroidetes, which are gram-negative bacteria in Chironomidae larvae, are the primary host bacteria of ARGs confirmed via resistance screening and DNA sequencing of V4 region of 16S rRNA gene. Feeding experiments further confirmed that ARGs from Chironomidae larvae can be enriched in the fish gut. Research gaps in food chain between sediments and fish are addressed in this study, and Chironomidae larvae is an important enricher of ARGs in the freshwater environment.
Collapse
Affiliation(s)
- Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Wanxiang Jiang
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Hanyu Zhao
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Mengmeng Shi
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Guoqing Cui
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Tongdi Yan
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Qi Wang
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
10
|
Roberts MG, Burgess S, Toombs-Ruane LJ, Benschop J, Marshall JC, French NP. Combining mutation and horizontal gene transfer in a within-host model of antibiotic resistance. Math Biosci 2021; 339:108656. [PMID: 34216634 DOI: 10.1016/j.mbs.2021.108656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Antibiotics are used extensively to control infections in humans and animals, usually by injection or a course of oral tablets. There are several methods by which bacteria can develop antimicrobial resistance (AMR), including mutation during DNA replication and plasmid mediated horizontal gene transfer (HGT). We present a model for the development of AMR within a single host animal. We derive criteria for a resistant mutant strain to replace the existing wild-type bacteria, and for co-existence of the wild-type and mutant. Where resistance develops through HGT via conjugation we derive criteria for the resistant strain to be excluded or co-exist with the wild-type. Our results are presented as bifurcation diagrams with thresholds determined by the relative fitness of the bacteria strains, expressed in terms of reproduction numbers. The results show that it is possible that applying and then relaxing antibiotic control may lead to the bacterial load returning to pre-control levels, but with an altered structure with regard to the variants that comprise the population. Removing antimicrobial selection pressure will not necessarily reduce AMR and, at a population level, other approaches to infection prevention and control are required, particularly when AMR is driven by both mutation and mobile genetic elements.
Collapse
Affiliation(s)
- M G Roberts
- School of Natural & Computational Sciences, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, 0745, New Zealand; New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, 0745, New Zealand; Infectious Disease Research Centre, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| | - S Burgess
- Infectious Disease Research Centre, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; mEpilab, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - L J Toombs-Ruane
- Infectious Disease Research Centre, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; mEpilab, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - J Benschop
- Infectious Disease Research Centre, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; mEpilab, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - J C Marshall
- Infectious Disease Research Centre, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; mEpilab, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - N P French
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, 0745, New Zealand; Infectious Disease Research Centre, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; mEpilab, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand; New Zealand Food Safety Science & Research Centre, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| |
Collapse
|
11
|
Harris HC, Buckley AM, Spittal W, Ewin D, Clark E, Altringham J, Bentley K, Moura IB, Wilcox MH, Woodford N, Davies K, Chilton CH. The effect of intestinal microbiota dysbiosis on growth and detection of carbapenemase-producing Enterobacterales within an in vitro gut model. J Hosp Infect 2021; 113:1-9. [PMID: 33932556 DOI: 10.1016/j.jhin.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Carbapenemase-producing Enterobacterales (CPE) can colonize the gut and are of major clinical concern. Identification of CPE colonization is problematic; there is no gold-standard detection method, and the effects of antibiotic exposure and microbiota dysbiosis on detection are unknown. AIM Based on a national survey we selected four CPE screening assays in common use. We used a clinically reflective in vitro model of human gut microbiota to investigate the performance of each test to detect three different CPE strains under different, clinically relevant antibiotic exposures. METHODS Twelve gut models were seeded with a pooled faecal slurry and exposed to CPE either before, after, concomitant with, or in the absence of piperacillin-tazobactam (358 mg/L, 3 × daily, seven days). Total Enterobacterales and CPE populations were enumerated daily. Regular screening for CPE was performed using Cepheid Xpert® Carba-R molecular test, and with Brilliance™ CRE, Colorex™ mSuperCARBA and CHROMID® CARBA SMART agars. FINDINGS Detection of CPE when the microbiota are intact is problematic. Antibiotic exposure disrupts microbiota populations and allows CPE proliferation, increasing detection. The performances of assays varied, particularly with respect to different CPE strains. The Cepheid assay performed better than the three agar methods for detecting a low level of CPE within an intact microbiota, although performance of all screening methods was comparable when CPE populations increased in a disrupted microbiota. CONCLUSION CPE strains differed in their dynamics of colonization in an in vitro gut model and in their subsequent response to antibiotic exposure. This affected detection by molecular and screening methods, which has implications for the sensitivity of CPE screening in healthcare settings.
Collapse
Affiliation(s)
- H C Harris
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - A M Buckley
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - W Spittal
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - D Ewin
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - E Clark
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - J Altringham
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - K Bentley
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - I B Moura
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - M H Wilcox
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK; Department of Microbiology, Leeds Teaching Hospitals NHS Trust, The General Infirmary, Leeds, UK
| | - N Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI), Reference Unit, Microbiology Services - Colindale, Public Health England, UK
| | - K Davies
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK; Department of Microbiology, Leeds Teaching Hospitals NHS Trust, The General Infirmary, Leeds, UK
| | - C H Chilton
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| |
Collapse
|
12
|
Prolonged Carriage of Carbapenemase-Producing Enterobacteriaceae: Clinical Risk Factors and the Influence of Carbapenemase and Organism Types. J Clin Med 2021; 10:jcm10020310. [PMID: 33467637 PMCID: PMC7830152 DOI: 10.3390/jcm10020310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Prolonged carriage of carbapenemase-producing Enterobacteriaceae (CPE) constitutes a substantial epidemiologic threat. This study aimed to evaluate whether the types of carbapenemase and organism can affect the duration of carriage and to evaluate the clinical factors associated with prolonged carriage. We retrospectively reviewed data for patients admitted between May 2013 and August 2018 who were identified as CPE carriers. A total of 702 patients were identified; the major types of carbapenemase and organism were Oxacillinase (OXA)-48-like (n = 480, 68.4%) and Klebsiella pneumoniae (K. pneumoniae) (n = 584, 83.2%). The analyses of time to spontaneous decolonization using the Kaplan–Meier method showed that OXA-48-like and K. pneumoniae were significantly associated with prolonged carriage (log rank, p = 0.001 and p < 0.001). In multivariable logistic analysis to assess the risk factors for CPE prolonged carriage in the 188 patients with available follow-up culture data for 3 months, K. pneumoniae (adjusted odds ratio [aOR] 6.58; 95% confidence interval [CI], 1.05–41.27; p = 0.044), CPE positive clinical specimen (aOR 11.14; 95% CI, 4.73–26.25; p < 0.001), and concurrent Clostridioides difficile infection (CDI) (aOR 3.98, 95% CI 1.29–12.26; p = 0.016) were predictive of prolonged carriage. Our results suggest that CP-K. pneumoniae may have higher probability of prolonged carriage, while the effect of OXA-48-like CPE is inconclusive. Furthermore, patients with CP-K. pneumoniae who had positive clinical specimen or concurrent CDI can cause a vicious circle in prolonged carriage.
Collapse
|
13
|
Ding C, Yang D, Ma J, Jin M, Shen Z, Shi D, Tian Z, Kang M, Li J, Qiu Z. Effects of free antibiotic resistance genes in the environment on intestinal microecology of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111119. [PMID: 32798757 DOI: 10.1016/j.ecoenv.2020.111119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The rapid spread of antibiotic resistance genes (ARGs) is a great challenge to the ecological safety and human health. The intestine of humans and animals is an important site for the increase and spread of ARGs due to the great diversity and abundance of microorganisms in the intestinal microecology. ARGs, including the intracellular (iARGs) and the extracellular (eARGs) ARGs, are usually introduced into the intestinal tract through the diet, and the iARGs are colonized and spread in the intestinal microbiota with the help of the host bacteria. However, whether the eARGs can enter the intestinal microorganisms in the absence of host bacteria is not known. Here, we show the transformation and the diffusion of the ampramycin resistance gene (Ap) carried by the free plasmid RK2 in the intestinal microbiota of mice. After two days of consecutive gavage with free RK2, the intracellular Ap gene increases from days 0-8 in the feces of mice, and has remained constant. Bacterial transformation happens in the small intestine, including proximal and distal jejuna and proximal and distal ilea, at the early stage (first two days), and the intracellular RK2 is diffused into the intestinal microbiota of mice by conjugation on days 2-8 day, which is based on the distribution of eARG and iARG and the mRNA expression levels of trbBp, trfAp, korA, korB, and trbA. The characteristics of ARGs susceptible microbiota for transformation are analyzed using 16s rRNA gene sequencing, transmission electron microscopy, and flow cytometric. The ingestion of RK2 affects the composition of intestinal microbiota especially for Proteobacteria, and the antibiotic residue promotes the increase in Escherichia coli. These findings are important to assess the risk of ARGs, especially the eARGs in the intestinal microecology.
Collapse
Affiliation(s)
- Chengshi Ding
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China; College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Dong Yang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Min Jin
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China
| | - Danyang Shi
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China
| | - Zhongjing Tian
- College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Meiling Kang
- College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Junwen Li
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China.
| | - Zhigang Qiu
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
14
|
Wang X, Kang Q, Zhao J, Liu Z, Ji F, Li J, Yang J, Zhang C, Jia T, Dong G, Liu S, Hu G, Qin J, Wang C. Characteristics and Epidemiology of Extended-Spectrum β-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae From Red Kangaroo, China. Front Microbiol 2020; 11:560474. [PMID: 33162947 PMCID: PMC7591395 DOI: 10.3389/fmicb.2020.560474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/13/2020] [Indexed: 11/20/2022] Open
Abstract
Due to its drug resistant nature, β-lactamase represents a serious challenge for public health. Extended-spectrum β-lactamase (ESBL) producing Klebsiella pneumoniae clones are increasingly reported worldwide. Little is known about the prevalence and biological characteristics of drug-resistant strains in zoos. During routine surveillance at the Zhengzhou Zoo of China, we found Klebsiella pneumoniae isolate in healthy Red Kangaroos (Macropus Rufus) with severe MDR. The Klebsiella pneumoniae were especially resistant to Cefuroxime Sodium (MIC, > 64 μg/mL), Ceftriaxone (MIC, >8 μg/mL) and Cefepime (MIC, >64 μg/mL), and belonged to ST290. Subsequently, whole genome sequencing (WGS) showed that the Chrome Chr-M297-1 harbored blaDHA–3, blaSHV–1, blaCTX–M–14, fosA5, dfrA3, sul3, etc., and pM297-1.1 [222,864 bp, IncFIB(K)], which carried nine antimicrobial genes including blaCTX–M–14, blaTEM–191, aph(3″)-Ib, aph(6)-Id and qnrS1, etc., and pM297-1.2 [225,763 bp, IncFII(K)] carried 22 antimicrobial genes including blaTEM–1, blaCTX–M–3, aph(3′)-Ia, aac(3)-IIa, aac(6′)-Ib-cr, aadA16, qnrB2, qnrS1, qacEΔ1, mphA, sul1, and dfrA27, etc. A traceability analysis then revealed that these two plasmids were highly similar to those recovered from human clinical samples in some southern cities in Sichuan Province, China (>99%), suggesting that these plasmids are spreading in China. Furthermore, two plasmids harboring conjugal transfer genes facilitated the transmission of antimicrobial genes by conjugation with E. coli J53. Our research shows that the transmission and adaptation of Klebsiella pneumoniae producing ESBLs is occurring in zoo environments, suggesting that zoos may be becoming important potential reservoirs for clinically important drug-resistant genes. It is therefore necessary to monitor the emergence and spread of drug-resistant gene strains in captive wild animals held in zoo environments.
Collapse
Affiliation(s)
- Xue Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China.,College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Qian Kang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Jianan Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Zhihui Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China.,College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Fang Ji
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | | | - Jianchun Yang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Guoying Dong
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Guocheng Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Jianhua Qin
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Chengmin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| |
Collapse
|
15
|
Successful use of culture and enrichment for the detection of OXA-181-producing Escherichia coli from rectal swab samples falsely categorized as negative by Xpert® Carba-R. Diagn Microbiol Infect Dis 2020; 96:114909. [DOI: 10.1016/j.diagmicrobio.2019.114909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 11/22/2022]
|
16
|
Hernández-García M, Pérez-Viso B, Navarro-San Francisco C, Baquero F, Morosini MI, Ruiz-Garbajosa P, Cantón R. Intestinal co-colonization with different carbapenemase-producing Enterobacterales isolates is not a rare event in an OXA-48 endemic area. EClinicalMedicine 2019; 15:72-79. [PMID: 31709416 PMCID: PMC6833436 DOI: 10.1016/j.eclinm.2019.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The current spread of carbapenemase-producing Enterobacterales (CPE) is a great concern. METHODS We recovered 198 CPE from 162 patients admitted in our Hospital (March 2014-March 2016) during the R-GNOSIS European Project. Microbiological features and plasmid characteristics of CPE recovered from patients co-colonized with multiple CPE were studied. FINDINGS Thirty patients (18.5%; CI 95%= 12.5%-24.5%) presented co-colonization with multiple CPE producing the same (CPE-SC) (15.4%) or a different carbapenemase (CPE-DC) (4.3%). OXA-48 (83.3%) was the most frequent carbapenemase, followed by VIM-1 (26.7%), NDM-1 (10%) and KPC-3 (3.3%). CPE-DC-patients had longer admissions [63 days (20-107)] than the other patients. Moreover, hospital stay until CPE detection was lower [9 days (5-14)] (p = 0.0052) in CPE-SC-patients than in those with a single colonization; 56% showed co-colonization in the first positive sample, although most of them had previous admissions and had received multiple antibiotic treatments. CPE were more frequently recovered in clinical samples from co-colonized [CPE-DC (28.6%), CPE-SC (24%)] patients than from patients with a single CPE (15.2%). Among CPE-SC-OXA-48 [80% (p = 0.11)], K. pneumoniae [88% (p = 0.006)] and E. coli [84% (p < 0.001)] were the most frequent species. In 60% of patients, K. pneumoniae and E. coli species were simultaneously recovered, frequently after a single OXA-48-K. pneumoniae colonization. High-risk clones (ST11, ST15, ST307) were detected in OXA-48-K. pneumoniae but a higher clonal diversity was found among E. coli. A frequent in-vivo cross-species plasmid transmission was shown, due to a dominant plasmid (IncL-pOXA-48), but also involving related or unrelated bla VIM-1-, bla NDM-1- and bla KPC-3-encoding plasmids. INTERPRETATION CPE co-colonization status should be monitored during epidemiological surveillance cultures, as these patients might be at a higher risk for infection. FUNDING European Commission Framework Programme 7 and Instituto de Salud Carlos III, Spain.
Collapse
Affiliation(s)
- Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Blanca Pérez-Viso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Carolina Navarro-San Francisco
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - María Isabel Morosini
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
- Corresponding author at: Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1. 28034-Madrid. Spain.
| |
Collapse
|