1
|
Goswami S, Chowdhury JP. Antiviral attributes of bee venom as a possible therapeutic approach against SARS-CoV-2 infection. Future Virol 2023:10.2217/fvl-2023-0127. [PMID: 37970095 PMCID: PMC10630947 DOI: 10.2217/fvl-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023]
Abstract
The unprecedented scale of the SARS-CoV-2 pandemic has driven considerable investigation into novel antiviral treatments since effective vaccination strategies cannot completely eradicate the virus. Apitherapy describes the medicinal use of bee venom, which may be an effective treatment against SARS-CoV-2 infection. Bee venom contains chemicals that are antimicrobial and stimulate the immune system to counteract viral load. The present review focuses on the use of bee venom as a possible treatment for COVID-19 and reviews studies on the pharmacodynamics of bee venom.
Collapse
Affiliation(s)
- Soumik Goswami
- Department of Zoology, Sunbeam Women's College, Varuna, Varanasi, 221002, India
| | | |
Collapse
|
2
|
Naidoo A, Naidoo K, Padayatchi N, Dooley KE. Use of integrase inhibitors in HIV-associated tuberculosis in high-burden settings: implementation challenges and research gaps. Lancet HIV 2022; 9:e130-e138. [PMID: 35120633 PMCID: PMC8970050 DOI: 10.1016/s2352-3018(21)00324-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
People living with HIV have a higher risk of developing tuberculosis, and tuberculosis is one of the leading causes of death among people living with HIV globally. Treating HIV and tuberculosis concurrently has morbidity and mortality benefits. However, HIV and tuberculosis co-treatment is challenging due to drug-drug interactions, overlapping toxicities, tuberculosis-associated immune reconstitution syndrome, and concerns for treatment failure or drug resistance. Drug-drug interactions between antiretrovirals and tuberculosis drugs are driven mainly by the rifamycins (for example, the first-line tuberculosis drug rifampicin), and dose adjustments or drug switches during co-treatment are commonly required. Several implementation challenges and research gaps exist when combining the integrase strand transfer inhibitors (INSTIs), highly potent antiretroviral drugs recommended as first-line treatment of HIV, and drugs used for the treatment and prevention of tuberculosis. Ongoing and planned studies will address some critical questions on the use of INSTIs in settings with a high tuberculosis burden, including dosing of dolutegravir, bictegravir, and cabotegravir when used with the rifamycins for both tuberculosis treatment and prevention. Failure, in the past, to include people with tuberculosis in HIV clinical treatment trials has been responsible for some of the research gaps still evident for informing optimisation of HIV and tuberculosis co-treatment.
Collapse
|
3
|
Rawizza HE, Oladokun R, Ejeliogu E, Oguche S, Ogunbosi BO, Agbaji O, Odaibo G, Imade G, Olaleye D, Wiesner L, Darin KM, Okonkwo P, Kanki PJ, Scarsi KK, McIlleron HM. Rifabutin pharmacokinetics and safety among TB/HIV-coinfected children receiving lopinavir/ritonavir-containing second-line ART. J Antimicrob Chemother 2021; 76:710-717. [PMID: 33294914 PMCID: PMC7879135 DOI: 10.1093/jac/dkaa512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/09/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Treatment options are limited for TB/HIV-coinfected children who require PI-based ART. Rifabutin is the preferred rifamycin for adults on PIs, but the one study evaluating rifabutin with PIs among children was stopped early due to severe neutropenia. METHODS We evaluated rifabutin safety and plasma pharmacokinetics among coinfected children 3-15 years of age receiving rifabutin 2.5 mg/kg daily with standard doses of lopinavir/ritonavir. The AUC0-24 at 2, 4 and 8 weeks after rifabutin initiation was described using intensive sampling and non-compartmental analysis. Clinical and laboratory toxicities were intensively monitored at 12 visits throughout the study. RESULTS Among 15 children with median (IQR) age 13.1 (10.9-14.0) years and weight 25.5 (22.3-30.5) kg, the median (IQR) rifabutin AUC0-24 was 5.21 (4.38-6.60) μg·h/mL. Four participants had AUC0-24 below 3.8 μg·h/mL (a target for the population average exposure) at week 2 and all had AUC0-24 higher than 3.8 μg·h/mL at the 4 and 8 week visits. Of 506 laboratory evaluations during rifabutin, grade 3 and grade 4 abnormalities occurred in 16 (3%) and 2 (0.4%) instances, respectively, involving 9 (60%) children. Specifically, grade 3 (n = 4) and grade 4 (n = 1) neutropenia resolved without treatment interruption or clinical sequelae in all patients. One child died at week 4 of HIV-related complications. CONCLUSIONS In children, rifabutin 2.5 mg/kg daily achieved AUC0-24 comparable to adults and favourable HIV and TB treatment outcomes were observed. Severe neutropenia was relatively uncommon and improved with ongoing rifabutin therapy. These data support the use of rifabutin for TB/HIV-coinfected children who require lopinavir/ritonavir.
Collapse
Affiliation(s)
- Holly E Rawizza
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Regina Oladokun
- College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Emeka Ejeliogu
- College of Health Sciences, Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - Stephen Oguche
- College of Health Sciences, Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - Babatunde O Ogunbosi
- College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Oche Agbaji
- College of Health Sciences, Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - Georgina Odaibo
- College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Godwin Imade
- College of Health Sciences, Jos University Teaching Hospital, University of Jos, Jos, Nigeria
| | - David Olaleye
- College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kristin M Darin
- Northwestern University School of Professional Studies, Chicago, IL, USA
| | | | | | - Kimberly K Scarsi
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Helen M McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Kasozi KI, Niedbała G, Alqarni M, Zirintunda G, Ssempijja F, Musinguzi SP, Usman IM, Matama K, Hetta HF, Mbiydzenyuy NE, Batiha GES, Beshbishy AM, Welburn SC. Bee Venom-A Potential Complementary Medicine Candidate for SARS-CoV-2 Infections. Front Public Health 2020; 8:594458. [PMID: 33363088 PMCID: PMC7758230 DOI: 10.3389/fpubh.2020.594458] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by severe cytokine storm syndrome following inflammation. SARS-CoV-2 directly interacts with angiotensin-converting enzyme 2 (ACE-2) receptors in the human body. Complementary therapies that impact on expression of IgE and IgG antibodies, including administration of bee venom (BV), have efficacy in the management of arthritis, and Parkinson's disease. A recent epidemiological study in China showed that local beekeepers have a level of immunity against SARS-CoV-2 with and without previous exposure to virus. BV anti-inflammatory properties are associated with melittin and phospholipase A2 (PLA2), both of which show activity against enveloped and non-enveloped viruses, including H1N1 and HIV, with activity mediated through antagonist activity against interleukin-6 (IL-6), IL-8, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). Melittin is associated with the underexpression of proinflammatory cytokines, including nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinases (ERK1/2), and protein kinase Akt. BV therapy also involves group III secretory phospholipase A2 in the management of respiratory and neurological diseases. BV activation of the cellular and humoral immune systems should be explored for the application of complementary medicine for the management of SARS-CoV-2 infections. BV "vaccination" is used to immunize against cytomegalovirus and can suppress metastases through the PLA2 and phosphatidylinositol-(3,4)-bisphosphate pathways. That BV shows efficacy for HIV and H1NI offers opportunity as a candidate for complementary therapy for protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,School of Medicine, Kabale University, Kabale, Uganda
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Poznan, Poland
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Gerald Zirintunda
- Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Fred Ssempijja
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | | | - Ibe Michael Usman
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Kevin Matama
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ngala Elvis Mbiydzenyuy
- Department of Basic Medical Sciences, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
5
|
Jacobs TG, Svensson EM, Musiime V, Rojo P, Dooley KE, McIlleron H, Aarnoutse RE, Burger DM, Turkova A, Colbers A. Pharmacokinetics of antiretroviral and tuberculosis drugs in children with HIV/TB co-infection: a systematic review. J Antimicrob Chemother 2020; 75:3433-3457. [PMID: 32785712 PMCID: PMC7662174 DOI: 10.1093/jac/dkaa328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Management of concomitant use of ART and TB drugs is difficult because of the many drug-drug interactions (DDIs) between the medications. This systematic review provides an overview of the current state of knowledge about the pharmacokinetics (PK) of ART and TB treatment in children with HIV/TB co-infection, and identifies knowledge gaps. METHODS We searched Embase and PubMed, and systematically searched abstract books of relevant conferences, following PRISMA guidelines. Studies not reporting PK parameters, investigating medicines that are not available any longer or not including children with HIV/TB co-infection were excluded. All studies were assessed for quality. RESULTS In total, 47 studies met the inclusion criteria. No dose adjustments are necessary for efavirenz during concomitant first-line TB treatment use, but intersubject PK variability was high, especially in children <3 years of age. Super-boosted lopinavir/ritonavir (ratio 1:1) resulted in adequate lopinavir trough concentrations during rifampicin co-administration. Double-dosed raltegravir can be given with rifampicin in children >4 weeks old as well as twice-daily dolutegravir (instead of once daily) in children older than 6 years. Exposure to some TB drugs (ethambutol and rifampicin) was reduced in the setting of HIV infection, regardless of ART use. Only limited PK data of second-line TB drugs with ART in children who are HIV infected have been published. CONCLUSIONS Whereas integrase inhibitors seem favourable in older children, there are limited options for ART in young children (<3 years) receiving rifampicin-based TB therapy. The PK of TB drugs in HIV-infected children warrants further research.
Collapse
Affiliation(s)
- Tom G Jacobs
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - Elin M Svensson
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Victor Musiime
- Research Department, Joint Clinical Research Centre, Kampala, Uganda
- Department of Paediatrics and Child Health, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Pablo Rojo
- Pediatric Infectious Diseases Unit. Hospital 12 de Octubre, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Kelly E Dooley
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Rob E Aarnoutse
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - David M Burger
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - Anna Turkova
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Angela Colbers
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| |
Collapse
|