1
|
Baek MS, Chung ES, Jung DS, Ko KS. Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudomonas aeruginosa. J Antimicrob Chemother 2021; 75:917-924. [PMID: 31977044 DOI: 10.1093/jac/dkz552] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Persister cells are responsible for antibiotic treatment failure and the emergence of antibiotic resistance. The synergistic lethal effects of antibiotic combinations on persister cells were investigated using Pseudomonas aeruginosa isolates. METHODS Persister assays were performed on P. aeruginosa clinical isolates using colistin, amikacin, ciprofloxacin and cefepime, individually and in combination. ATP concentrations were measured and morphological changes in persister cells were observed using transmission electron microscopy (TEM). The expression of relA, spoT and obg genes was evaluated and persister-cell formation was investigated in a relA and spoT double mutant (ΔrelAΔspoT). RESULTS The P. aeruginosa persister cells were eradicated upon exposure to the colistin-based antibiotic combination colistin + ciprofloxacin. Simultaneous treatment with both antibiotics, rather than sequential treatment, caused more effective eradication. The intracellular ATP concentration was most reduced in colistin persisters. While the spoT gene was only overexpressed in colistin-persister cells, the relA gene was overexpressed in all persister cells compared with untreated parent cells. TEM analysis suggested the possibility that persister cells might be formed by different mechanisms depending on the antibiotic. Cell elongation and cell wall or membrane damage in colistin persisters, DNA condensation in amikacin persisters and outer membrane vesicles in ciprofloxacin persisters were identified. CONCLUSIONS In P. aeruginosa, the colistin-based antibiotic combination (colistin + ciprofloxacin) was effective for the eradication of persister cells, probably due to the different persister cell-formation mechanisms between the two antibiotics. Simultaneous, rather than sequential, treatment with two antibiotics could be more effective for eradicating persister P. aeruginosa cells.
Collapse
Affiliation(s)
- Mi Suk Baek
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Eun Seon Chung
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Dong Sik Jung
- Department of Internal Medicine, Dong-A University College of Medicine, Busan 49201, South Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| |
Collapse
|
2
|
Birk SE, Mazzoni C, Mobasharah Javed M, Borre Hansen M, Krogh Johansen H, Anders Juul Haagensen J, Molin S, Hagner Nielsen L, Boisen A. Co-delivery of ciprofloxacin and colistin using microcontainers for bacterial biofilm treatment. Int J Pharm 2021; 599:120420. [PMID: 33647404 DOI: 10.1016/j.ijpharm.2021.120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
In many infected patients, bacterial biofilms represent a mode of growth that significantly enhances the tolerance to antimicrobials, leaving the patients with difficult-to-cure infections. Therefore, there is a growing need for effective treatment strategies to combat biofilm infections. In this work, reservoir-based microdevices, also known as microcontainers (MCs), are co-loaded with two antibiotics: ciprofloxacin hydrochloride (CIP) and colistin sulfate (COL), targeting both metabolically active and dormant subpopulations of the biofilm. We assess the effect of the two drugs in a time-kill study of planktonic P. aeruginosa and find that co-loaded MCs are superior to monotherapy, resulting in complete killing of the entire population. Biofilm consortia of P. aeruginosa grown in flow chambers were not fully eradicated. However, antibiotics in MCs work significantly faster than simple perfusion of antibiotics (62.5 ± 8.3% versus 10.6 ± 10.1% after 5 h) in biofilm consortia, showing the potential of the MC-based treatment to minimize the use of antimicrobials in future therapies.
Collapse
Affiliation(s)
- Stine Egebro Birk
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark.
| | - Chiara Mazzoni
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Madeeha Mobasharah Javed
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Morten Borre Hansen
- Novo Nordisk Foundation Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Produktionstorvet 423, 2800 Kongens Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Section 9301 Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4A, Copenhagen Ø 2100, Denmark; Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark
| | - Janus Anders Juul Haagensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Soares A, Alexandre K, Etienne M. Tolerance and Persistence of Pseudomonas aeruginosa in Biofilms Exposed to Antibiotics: Molecular Mechanisms, Antibiotic Strategies and Therapeutic Perspectives. Front Microbiol 2020; 11:2057. [PMID: 32973737 PMCID: PMC7481396 DOI: 10.3389/fmicb.2020.02057] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa biofilm-related infections are difficult to treat with antibiotics. Along the different layers of the biofilm, the P. aeruginosa population is heterogeneous, exhibiting an extreme ability to adapt his metabolic activity to the local microenvironment. At the deepest layers of the biofilm is a subset of dormant cells, called persister cells. Though antimicrobial failure might be multifactorial, it is now demonstrated that these persister cells, genetically identical to a fully susceptible strain, but phenotypically divergent, are highly tolerant to antibiotics, and contribute to antimicrobial failure. By eradicating susceptible, metabolically active cells, antibiotics bring out pre-existing persister cells. The biofilm mode of growth creates microenvironment conditions that activate stringent response mechanisms, SOS response and toxin-antitoxin systems that render the bacterial population highly tolerant to antibiotics. Using diverse, not standardized, models of biofilm infection, a large panel of antibiotic regimen has been evaluated. They demonstrated that biofilm growth had an unequal impact of antibiotic activity, colistin and meropenem being the less impacted antibiotics. Different combination and sequential antimicrobial therapies were also evaluated, and could be partially efficient, but none succeeded in eradicating persister cells, so that non-antibiotic alternative strategies are currently under development. This article reviews the molecular mechanisms involved in antibiotic tolerance and persistence in P. aeruginosa biofilm infections. A review of the antimicrobial regimen evaluated for the treatment of P. aeruginosa biofilm infection is also presented. While tremendous progress has been made in the understanding of biofilm-related infections, alternative non-antibiotic strategies are now urgently needed.
Collapse
Affiliation(s)
- Anaïs Soares
- GRAM 2.0, EA 2656, Normandie University, UNIROUEN, Rouen, France
| | - Kévin Alexandre
- GRAM 2.0, EA 2656, Normandie University, UNIROUEN, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| | - Manuel Etienne
- GRAM 2.0, EA 2656, Normandie University, UNIROUEN, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| |
Collapse
|
4
|
Salcedo-Sora JE, Kell DB. A Quantitative Survey of Bacterial Persistence in the Presence of Antibiotics: Towards Antipersister Antimicrobial Discovery. Antibiotics (Basel) 2020; 9:E508. [PMID: 32823501 PMCID: PMC7460088 DOI: 10.3390/antibiotics9080508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bacterial persistence to antibiotics relates to the phenotypic ability to survive lethal concentrations of otherwise bactericidal antibiotics. The quantitative nature of the time-kill assay, which is the sector's standard for the study of antibiotic bacterial persistence, is an invaluable asset for global, unbiased, and cross-species analyses. Methods: We compiled the results of antibiotic persistence from antibiotic-sensitive bacteria during planktonic growth. The data were extracted from a sample of 187 publications over the last 50 years. The antibiotics used in this compilation were also compared in terms of structural similarity to fluorescent molecules known to accumulate in Escherichia coli. Results: We reviewed in detail data from 54 antibiotics and 36 bacterial species. Persistence varies widely as a function of the type of antibiotic (membrane-active antibiotics admit the fewest), the nature of the growth phase and medium (persistence is less common in exponential phase and rich media), and the Gram staining of the target organism (persistence is more common in Gram positives). Some antibiotics bear strong structural similarity to fluorophores known to be taken up by E. coli, potentially allowing competitive assays. Some antibiotics also, paradoxically, seem to allow more persisters at higher antibiotic concentrations. Conclusions: We consolidated an actionable knowledge base to support a rational development of antipersister antimicrobials. Persistence is seen as a step on the pathway to antimicrobial resistance, and we found no organisms that failed to exhibit it. Novel antibiotics need to have antipersister activity. Discovery strategies should include persister-specific approaches that could find antibiotics that preferably target the membrane structure and permeability of slow-growing cells.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|