1
|
Baines SL, Guérillot R, Ballard S, Johnson PDR, Stinear TP, Roberts S, Howden BP. Genomic investigation of the emergence of vanD vancomycin-resistant Enterococcus faecium. Access Microbiol 2023; 5:000712.v3. [PMID: 38188239 PMCID: PMC10765050 DOI: 10.1099/acmi.0.000712.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Vancomycin-resistant Enterococcus (VRE) is an increasingly identified cause of human disease, with most infections resulting from the vanA and vanB genotypes; less is known about other clinically relevant genotypes. Here we report a genomic exploration of a vanD VRE faecium (VREfm), which arose de novo during a single infectious episode. The genomes of the vancomycin-susceptible E. faecium (VSEfm) recipient and resulting VREfm were subjected to long-read sequencing and closed, with whole-genome alignments, cross-mapping and orthologue clustering used to identify genomic variation. Three key differences were identified. (i) The VREfm chromosome gained a 142.6 kb integrative conjugative element (ICE) harbouring the vanD locus. (ii) The native ligase (ddl) was disrupted by an ISEfm1 insertion. (iii) A large 1.74 Mb chromosomal inversion of unknown consequence occurred. Alignment and phylogenetic-based comparisons of the VREfm with a global collection of vanD-harbouring genomes identified strong similarities in the 120-160 kb genomic region surrounding vanD, suggestive of a common mobile element and integration site, irrespective of the diverse taxonomic, geographical and host origins of the isolates. This isolate diversity revealed that this putative ICE (and its source) is globally disseminated and is capable of being acquired by different genera. Although the incidence of vanD VREfm is low, understanding its emergence and potential for spread is crucial for the ongoing efforts to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Sarah L. Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Romain Guérillot
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Paul D. R. Johnson
- Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sally Roberts
- Department of Microbiology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Tanabe M, Natori T, Horiuchi K, Denda T, Koide S, Nagano Y, Nagano N. Novel genomic island carrying a new vanD allele in a vancomycin-resistant Enterococcus faecium clinical isolate belonging to clade A1 in Japan. J Glob Antimicrob Resist 2023; 34:211-213. [PMID: 37527703 DOI: 10.1016/j.jgar.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Affiliation(s)
- Mizuki Tanabe
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Tatsuya Natori
- Department of Laboratory Medicine, Shinshu University Hospital, Nagano, Japan
| | - Kazuki Horiuchi
- Department of Laboratory Medicine, Shinshu University Hospital, Nagano, Japan
| | - Tomohiro Denda
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Shota Koide
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Nagano, Japan
| | - Yukiko Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Noriyuki Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Nagano, Japan; Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Nagano, Japan.
| |
Collapse
|
3
|
McCallum GE, Rossiter AE, Quraishi MN, Iqbal TH, Kuehne SA, van Schaik W. Noise reduction strategies in metagenomic chromosome confirmation capture to link antibiotic resistance genes to microbial hosts. Microb Genom 2023; 9:mgen001030. [PMID: 37272920 PMCID: PMC10327510 DOI: 10.1099/mgen.0.001030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/11/2023] [Indexed: 06/06/2023] Open
Abstract
The gut microbiota is a reservoir for antimicrobial resistance genes (ARGs). With current sequencing methods, it is difficult to assign ARGs to their microbial hosts, particularly if these ARGs are located on plasmids. Metagenomic chromosome conformation capture approaches (meta3C and Hi-C) have recently been developed to link bacterial genes to phylogenetic markers, thus potentially allowing the assignment of ARGs to their hosts on a microbiome-wide scale. Here, we generated a meta3C dataset of a human stool sample and used previously published meta3C and Hi-C datasets to investigate bacterial hosts of ARGs in the human gut microbiome. Sequence reads mapping to repetitive elements were found to cause problematic noise in, and may importantly skew interpretation of, meta3C and Hi-C data. We provide a strategy to improve the signal-to-noise ratio by discarding reads that map to insertion sequence elements and to the end of contigs. We also show the importance of using spike-in controls to quantify whether the cross-linking step in meta3C and Hi-C protocols has been successful. After filtering to remove artefactual links, 87 ARGs were assigned to their bacterial hosts across all datasets, including 27 ARGs in the meta3C dataset we generated. We show that commensal gut bacteria are an important reservoir for ARGs, with genes coding for aminoglycoside and tetracycline resistance being widespread in anaerobic commensals of the human gut.
Collapse
Affiliation(s)
- Gregory E. McCallum
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Amanda E. Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Tariq H. Iqbal
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sarah A. Kuehne
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|