1
|
Oke MT, Martz K, Mocăniță M, Knezevic S, D'Costa VM. Analysis of Acinetobacter P-type type IV secretion system-encoding plasmid diversity uncovers extensive secretion system conservation and diverse antibiotic resistance determinants. Antimicrob Agents Chemother 2024; 68:e0103824. [PMID: 39494882 PMCID: PMC11619351 DOI: 10.1128/aac.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Acinetobacter baumannii is globally recognized as a multi-drug-resistant pathogen of critical concern due to its capacity for horizontal gene transfer and resistance to antibiotics. Phylogenetically diverse Acinetobacter species mediate human infection, including many considered as important emerging pathogens. While globally recognized as a pathogen of concern, pathogenesis mechanisms are poorly understood. P-type type IV secretion systems (T4SSs) represent important drivers of pathogen evolution, responsible for horizontal gene transfer and secretion of proteins that mediate host-pathogen interactions, contributing to pathogen survival, antibiotic resistance, virulence, and biofilm formation. Genes encoding a P-type T4SS were previously identified on plasmids harboring the carbapenemase gene blaNDM-1 in several clinically problematic Acinetobacter; however, their prevalence among the genus, geographical distribution, the conservation of T4SS proteins, and full capacity for resistance genes remain unclear. Using systematic analyses, we show that these plasmids belong to a group of 53 P-type T4SS-encoding plasmids in 20 established Acinetobacter species, the majority of clinical relevance, including diverse A. baumannii sequence types and one strain of Providencia rettgeri. The strains were globally distributed in 14 countries spanning five continents, and the conjugative operon's T4SS proteins were highly conserved in most plasmids. A high proportion of plasmids harbored resistance genes, with 17 different genes spanning seven drug classes. Collectively, this demonstrates that P-type T4SS-encoding plasmids are more widespread among the Acinetobacter genus than previously anticipated, including strains of both clinical and environmental importance. This research provides insight into the spread of resistance genes among Acinetobacter and highlights a group of plasmids of importance for future surveillance.
Collapse
Affiliation(s)
- Mosopefoluwa T. Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Kailey Martz
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Mădălina Mocăniță
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Sara Knezevic
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa M. D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Yousefi B, Kashanipoor S, Mazaheri P, Alibabaei F, Babaeizad A, Asli S, Mohammadi S, Gorgin AH, Alipour T, Oksenych V, Eslami M. Cefiderocol in Combating Carbapenem-Resistant Acinetobacter baumannii: Action and Resistance. Biomedicines 2024; 12:2532. [PMID: 39595098 PMCID: PMC11592056 DOI: 10.3390/biomedicines12112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Acinetobacter baumannii (A. baumannii) has emerged as a prominent multidrug-resistant (MDR) pathogen, significantly complicating treatment strategies due to its formidable resistance mechanisms, particularly against carbapenems. Reduced membrane permeability, active antibiotic efflux, and enzymatic hydrolysis via different β-lactamases are the main resistance mechanisms displayed by A. baumannii, and they are all effective against successful treatment approaches. This means that alternate treatment approaches, such as combination therapy that incorporates beta-lactams, β-lactamase inhibitors, and novel antibiotics like cefiderocol, must be investigated immediately. Cefiderocol, a new catechol-substituted siderophore cephalosporin, improves antibacterial activity by allowing for better bacterial membrane penetration. Due to its unique structure, cefiderocol can more efficiently target and destroy resistant bacteria by using iron transport systems. Through its inhibition of peptidoglycan formation through binding to penicillin-binding proteins (PBPs), cefiderocol avoids conventional resistance pathways and induces bacterial cell lysis. The possibility of resistance development due to β-lactamase synthesis and mutations in PBPs, however, emphasizes the need for continued investigation into cefiderocol's efficacy in combination treatment regimes. Cefiderocol's siderophore mimic mechanism is especially important in iron-limited conditions because it can use ferric-siderophore transporters to enter cells. Additionally, its passive diffusion through bacterial porins increases its intracellular concentrations, making it a good option for treating carbapenem-resistant A. baumannii, especially in cases of severe infections and ventilator-associated diseases (IVACs). Cefiderocol may reduce MDR infection morbidity and mortality when combined with customized antimicrobial treatments, but further investigation is needed to improve patient outcomes and address A. baumannii resistance issues.
Collapse
Affiliation(s)
- Bahman Yousefi
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Setayesh Kashanipoor
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Payman Mazaheri
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Farnaz Alibabaei
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Ali Babaeizad
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Shima Asli
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Sina Mohammadi
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Amir Hosein Gorgin
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Tahereh Alipour
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Majid Eslami
- Department of bacteriology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
3
|
Furugaito M, Anraku M, Kawahara R, Hisato A, Kamisako T, Yoshida K. First report of New Delhi metallo-β-lactamase-1-producing Acinetobacter soli in Japan. J Infect Chemother 2023; 29:1177-1180. [PMID: 37482191 DOI: 10.1016/j.jiac.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
New Delhi metallo-β-lactamase (NDM)-producing gram-negative rods, including Acinetobacter species, are a global problem but have rarely been isolated in Japan. To our knowledge, this is the first study to isolate an NDM-1-producing Acinetobacter soli strain, KUH106, in Japan. We analyzed this strain using next-generation sequencing to examine the plasmid carrying NDM-1. This plasmid, named pKUH106_NDM1, is 41,135 bp in length and contains genetic contexts with the structure ISAba14-aph(3')-VI-ISAba125-blaNDM-1ble-MBL. Comparative analysis of the plasmid revealed that it resembled the plasmids of Acinetobacter detected in various countries, such as the A. soli isolate from Taiwan and the Acinetobacter baumannii isolate from a healthcare facility in Osaka Prefecture, Japan. These results suggest that blaNDM-1 may spread via this plasmid in Acinetobacter species. This phenomenon needs to be confirmed through the genetic analysis of A. baumannii and other carbapenem-resistant Acinetobacter species. In particular, blaNDM-1 and other resistance genes must be investigated, and the spread of these genes in the community must be cautioned.
Collapse
Affiliation(s)
- Michiko Furugaito
- Department of Clinical Laboratory, Kindai University Hospital, 377-2, Ohno-Higashi, OsakaSayama, Osaka, 589-8511, Japan.
| | - Masaki Anraku
- Division of Microbiology, Bacteriology Section, Osaka Institute of Public Health, Nakamichi 1-3-69, Higashinari-ku, Osaka-shi, Osaka, 537-0025, Japan
| | - Ryuji Kawahara
- Division of Microbiology, Bacteriology Section, Osaka Institute of Public Health, Nakamichi 1-3-69, Higashinari-ku, Osaka-shi, Osaka, 537-0025, Japan
| | - Akihiro Hisato
- Division of Infection Control and Prevention, Department of Medical safety management, Kindai University Hospital, 377-2, Ohno-Higashi, OsakaSayama, Osaka, 589-8511, Japan
| | - Toshinori Kamisako
- Department of Clinical Laboratory Medicine, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, OsakaSayama, Osaka, 589-8511, Japan
| | - Koichiro Yoshida
- Division of Infection Control and Prevention, Department of Medical safety management, Kindai University Hospital, 377-2, Ohno-Higashi, OsakaSayama, Osaka, 589-8511, Japan
| |
Collapse
|
4
|
Zhang N, Liu X, Qi L, Chen J, Qin S, Jin M, Yang X, Liu F, Guo J, Liu J, Wang C, Chen Y. A clinical KPC-producing Klebsiella michiganensis strain carrying IncFII/IncFIA (HI1)/IncFIB (K) multiple replicon plasmid. Front Microbiol 2023; 13:1086296. [PMID: 36687642 PMCID: PMC9845883 DOI: 10.3389/fmicb.2022.1086296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Klebsiella michiganensis is an increasingly important bacterial pathogen causing nosocomial infections in clinical patients. In this study, we described the molecular and genomic characteristics of a carbapenem-resistant K. michiganensis strain KM166 cultured from a one-month premature baby's blood sample. KM166 showed lower biofilm forming ability in optical density (OD) than K. pneumoniae NTUH-K2044 (0.271 ± 0.027 vs. 0.595 ± 0.054, p = 0.001), and the median lethal dose (0.684 lg CFU/mL) was lower than K. pneumoniae strain NTUH-K2044 (6.679 lg CFU/mL). A IncFII/IncFIA(HI1)/IncFIB(K) multiple replicon plasmid in KM166 was identified carrying three replicon types. It has low homology to Escherichia coli pMRY09-581ECO_1 and the highest homology similarity to the INcFIA/INcFII(p14)-type plasmid in K. michiganensis strain fxq plasmid pB_KPC, suggesting that this multiple replicon plasmid was unlikely to have been transmitted from E. coli and probably a transfer of repFIB replicon genes from other K. michiganensis strains into the INcFIA/INcFII(p14)-type plasmid of KM166 had occurred. Mapping of the gene environment revealed that bla KPC-2 in KM166 plasmid 3 had high identity and same Tn3-tnpR-IS481-bla KPC-2-klcA_1 genomic context structure with K. pneumoniae strain JKP55, plasmid pKPC-J5501, and bla KPC-2-carrying plasmid proved to be autonomously transferred under the help of mobile genetic elements into Escherichia coli 600 by plasmid conjugation experiment. In conclusion, we have characterized a K. michiganensis strain carrying multi-replicon IncFII/IncFIA(HI1)/IncFIB(K) plasmid and bla KPC-2-carrying IncFII(p14)/IncFIA plasmid in this study, which provided insights about the evolutionary diversity of plasmids carried by K. michiganensis.
Collapse
Affiliation(s)
- Na Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiong Liu
- Department of Information, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Lihua Qi
- Department of Clinical Laboratory, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiali Chen
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shiyu Qin
- Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China,College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Meiling Jin
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiaojing Yang
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Fangni Liu
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jie Liu
- Department of Clinical Laboratory, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China,Jie Liu,
| | - Changjun Wang
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China,College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China,Changjun Wang,
| | - Yong Chen
- Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China,*Correspondence: Yong Chen,
| |
Collapse
|
5
|
Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060723. [PMID: 35740130 PMCID: PMC9220290 DOI: 10.3390/antibiotics11060723] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cefiderocol appears promising, as it can overcome most β-lactam resistance mechanisms (including β-lactamases, porin mutations, and efflux pumps). Resistance is uncommon according to large multinational cohorts, including against isolates resistant to carbapenems, ceftazidime/avibactam, ceftolozane/tazobactam, and colistin. However, alarming proportions of resistance have been reported in some recent cohorts (up to 50%). A systematic review was conducted in PubMed and Scopus from inception to May 2022 to review mechanisms of resistance, prevalence of heteroresistance, and in vivo emergence of resistance to cefiderocol during treatment. A variety of mechanisms, typically acting in concert, have been reported to confer resistance to cefiderocol: β-lactamases (especially NDM, KPC and AmpC variants conferring resistance to ceftazidime/avibactam, OXA-427, and PER- and SHV-type ESBLs), porin mutations, and mutations affecting siderophore receptors, efflux pumps, and target (PBP-3) modifications. Coexpression of multiple β-lactamases, often in combination with permeability defects, appears to be the main mechanism of resistance. Heteroresistance is highly prevalent (especially in A. baumannii), but its clinical impact is unclear, considering that in vivo emergence of resistance appears to be low in clinical studies. Nevertheless, cases of in vivo emerging cefiderocol resistance are increasingly being reported. Continued surveillance of cefiderocol’s activity is important as this agent is introduced in clinical practice.
Collapse
|