1
|
Kawser AQMR, Hoque MN, Rahman MS, Sakif TI, Coffey TJ, Islam T. Unveiling the gut bacteriome diversity and distribution in the national fish hilsa (Tenualosa ilisha) of Bangladesh. PLoS One 2024; 19:e0303047. [PMID: 38691556 PMCID: PMC11062526 DOI: 10.1371/journal.pone.0303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024] Open
Abstract
The field of fish microbiome research has rapidly been advancing, primarily focusing on farmed or laboratory fish species rather than natural or marine fish populations. This study sought to reveal the distinctive gut bacteriome composition and diversity within the anadromous fish species Tenualosa ilisha (hilsa), which holds the status of being the national fish of Bangladesh. We conducted an analysis on 15 gut samples obtained from 15 individual hilsa fishes collected from three primary habitats (e.g., freshwater = 5, brackish water = 5 and marine water = 5) in Bangladesh. The analysis utilized metagenomics based on 16S rRNA gene sequencing targeting the V3-V4 regions. Our comprehensive identification revealed a total of 258 operational taxonomic units (OTUs). The observed OTUs were represented by six phyla, nine classes, 19 orders, 26 families and 40 genera of bacteria. Our analysis unveiled considerable taxonomic differences among the habitats (freshwater, brackish water, and marine water) of hilsa fishes, as denoted by a higher level of shared microbiota (p = 0.007, Kruskal-Wallis test). Among the identified genera in the gut of hilsa fishes, including Vagococcus, Morganella, Enterobacter, Plesiomonas, Shigella, Clostridium, Klebsiella, Serratia, Aeromonas, Macrococcus, Staphylococcus, Proteus, and Hafnia, several are recognized as fish probiotics. Importantly, some bacterial genera such as Sinobaca, Synechococcus, Gemmata, Serinicoccus, Saccharopolyspora, and Paulinella identified in the gut of hilsa identified in this study have not been reported in any aquatic or marine fish species. Significantly, we observed that 67.50% (27/40) of bacterial genera were found to be common among hilsa fishes across all three habitats. Our findings offer compelling evidence for the presence of both exclusive and communal bacteriomes within the gut of hilsa fishes, exhibiting potential probiotic properties. These observations could be crucial for guiding future microbiome investigations in this economically significant fish species.
Collapse
Affiliation(s)
- A. Q. M. Robiul Kawser
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tahsin Islam Sakif
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia, United States of America
| | - Tracey J. Coffey
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
2
|
Biswas S, Foysal MJ, Mannan A, Sharifuzzaman SM, Tanzina AY, Tanni AA, Sharmen F, Hossain MM, Chowdhury MSN, Tay ACY, Islam SMR. Microbiome pattern and diversity of an anadromous fish, hilsa shad (Tenualosa ilisha). Mol Biol Rep 2023; 51:38. [PMID: 38158480 DOI: 10.1007/s11033-023-08965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The host-microbe interactions are complex, dynamic and context-dependent. In this regard, migratory fish species like hilsa shad (Tenualosa ilisha), which migrates from seawater to freshwater for spawning, provides a unique system for investigating the microbiome under an additional change in fish's habitat. This work was undertaken to detect taxonomic variation of microbiome and their function in the migration of hilsa. METHODS AND RESULTS The study employed 16S rRNA amplicon-based metagenomic analysis to scrutinize bacterial diversity in hilsa gut, skin mucus and water. Thus, a total of 284 operational taxonomic units (OTUs), 9 phyla, 35 orders and 121 genera were identified in all samples. More than 60% of the identified bacteria were Proteobacteria with modest abundance (> 5%) of Firmicutes, Bacteroidetes and Actinobacteria. Leucobacter in gut and Serratia in skin mucus were the core bacterial genera, while Acinetobacter, Pseudomonas and Psychrobacter exhibited differential compositions in gut, skin mucus and water. CONCLUSIONS Representative fresh-, brackish- and seawater samples of hilsa habitats were primarily composed of Vibrio, Serratia and Psychrobacter, and their diversity in seawater was significantly higher (P < 0.05) than freshwater. Overall, salinity and water microbiota had an influence on the microbial composition of hilsa shad, contributing to host metabolism and adaptation processes. This pioneer exploration of hilsa gut and skin mucus bacteria across habitats will advance our insights into microbiome assembly in migratory fish populations.
Collapse
Affiliation(s)
- Sabuj Biswas
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Adnan Mannan
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - S M Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Afsana Yeasmin Tanzina
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Afroza Akter Tanni
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Farjana Sharmen
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Md Mobarok Hossain
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | | | - Alfred Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - S M Rafiqul Islam
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh.
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh.
| |
Collapse
|