1
|
Stanley EAM, Souza R, Winder AJ, Gulve V, Amador K, Wilms M, Forkert ND. Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging. J Am Med Inform Assoc 2024; 31:2613-2621. [PMID: 38942737 PMCID: PMC11491635 DOI: 10.1093/jamia/ocae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
OBJECTIVE Artificial intelligence (AI) models trained using medical images for clinical tasks often exhibit bias in the form of subgroup performance disparities. However, since not all sources of bias in real-world medical imaging data are easily identifiable, it is challenging to comprehensively assess their impacts. In this article, we introduce an analysis framework for systematically and objectively investigating the impact of biases in medical images on AI models. MATERIALS AND METHODS Our framework utilizes synthetic neuroimages with known disease effects and sources of bias. We evaluated the impact of bias effects and the efficacy of 3 bias mitigation strategies in counterfactual data scenarios on a convolutional neural network (CNN) classifier. RESULTS The analysis revealed that training a CNN model on the datasets containing bias effects resulted in expected subgroup performance disparities. Moreover, reweighing was the most successful bias mitigation strategy for this setup. Finally, we demonstrated that explainable AI methods can aid in investigating the manifestation of bias in the model using this framework. DISCUSSION The value of this framework is showcased in our findings on the impact of bias scenarios and efficacy of bias mitigation in a deep learning model pipeline. This systematic analysis can be easily expanded to conduct further controlled in silico trials in other investigations of bias in medical imaging AI. CONCLUSION Our novel methodology for objectively studying bias in medical imaging AI can help support the development of clinical decision-support tools that are robust and responsible.
Collapse
Affiliation(s)
- Emma A M Stanley
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Raissa Souza
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Anthony J Winder
- Department of Radiology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Vedant Gulve
- Department of Radiology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Kimberly Amador
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Matthias Wilms
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
2
|
Souza R, Stanley EAM, Gulve V, Moore J, Kang C, Camicioli R, Monchi O, Ismail Z, Wilms M, Forkert ND. HarmonyTM: multi-center data harmonization applied to distributed learning for Parkinson's disease classification. J Med Imaging (Bellingham) 2024; 11:054502. [PMID: 39308760 PMCID: PMC11413651 DOI: 10.1117/1.jmi.11.5.054502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose Distributed learning is widely used to comply with data-sharing regulations and access diverse datasets for training machine learning (ML) models. The traveling model (TM) is a distributed learning approach that sequentially trains with data from one center at a time, which is especially advantageous when dealing with limited local datasets. However, a critical concern emerges when centers utilize different scanners for data acquisition, which could potentially lead models to exploit these differences as shortcuts. Although data harmonization can mitigate this issue, current methods typically rely on large or paired datasets, which can be impractical to obtain in distributed setups. Approach We introduced HarmonyTM, a data harmonization method tailored for the TM. HarmonyTM effectively mitigates bias in the model's feature representation while retaining crucial disease-related information, all without requiring extensive datasets. Specifically, we employed adversarial training to "unlearn" bias from the features used in the model for classifying Parkinson's disease (PD). We evaluated HarmonyTM using multi-center three-dimensional (3D) neuroimaging datasets from 83 centers using 23 different scanners. Results Our results show that HarmonyTM improved PD classification accuracy from 72% to 76% and reduced (unwanted) scanner classification accuracy from 53% to 30% in the TM setup. Conclusion HarmonyTM is a method tailored for harmonizing 3D neuroimaging data within the TM approach, aiming to minimize shortcut learning in distributed setups. This prevents the disease classifier from leveraging scanner-specific details to classify patients with or without PD-a key aspect for deploying ML models for clinical applications.
Collapse
Affiliation(s)
- Raissa Souza
- University of Calgary, Department of Radiology, Cumming School of Medicine, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Alberta, Canada
- University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| | - Emma A. M. Stanley
- University of Calgary, Department of Radiology, Cumming School of Medicine, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Alberta, Canada
- University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| | - Vedant Gulve
- Indian Institute of Technology, Department of Electronics and Electrical Communication Engineering, Kharagpur, West Bengal, India
| | - Jasmine Moore
- University of Calgary, Department of Radiology, Cumming School of Medicine, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Alberta, Canada
- University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| | - Chris Kang
- University of Calgary, Department of Radiology, Cumming School of Medicine, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Richard Camicioli
- University of Alberta, Neuroscience and Mental Health Institute and Department of Medicine (Neurology), Edmonton, Alberta, Canada
| | - Oury Monchi
- University of Calgary, Department of Radiology, Cumming School of Medicine, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- Université de Montréal, Department of Radiology, Radio-oncology and Nuclear Medicine, Montréal, Quebec, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- University of Calgary, Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Zahinoor Ismail
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, Alberta, Canada
- University of Calgary, Department of Psychiatry, Calgary, Alberta, Canada
- University of Exeter, Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, Exeter, United Kingdom
| | - Matthias Wilms
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
- University of Calgary, Department of Pediatrics, Calgary, Alberta, Canada
- University of Calgary, Department of Community Health Sciences, Calgary, Alberta, Canada
| | - Nils D. Forkert
- University of Calgary, Department of Radiology, Cumming School of Medicine, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
- University of Calgary, Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Winder AJ, Stanley EA, Fiehler J, Forkert ND. Challenges and Potential of Artificial Intelligence in Neuroradiology. Clin Neuroradiol 2024; 34:293-305. [PMID: 38285239 DOI: 10.1007/s00062-024-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE Artificial intelligence (AI) has emerged as a transformative force in medical research and is garnering increased attention in the public consciousness. This represents a critical time period in which medical researchers, healthcare providers, insurers, regulatory agencies, and patients are all developing and shaping their beliefs and policies regarding the use of AI in the healthcare sector. The successful deployment of AI will require support from all these groups. This commentary proposes that widespread support for medical AI must be driven by clear and transparent scientific reporting, beginning at the earliest stages of scientific research. METHODS A review of relevant guidelines and literature describing how scientific reporting plays a central role at key stages in the life cycle of an AI software product was conducted. To contextualize this principle within a specific medical domain, we discuss the current state of predictive tissue outcome modeling in acute ischemic stroke and the unique challenges presented therein. RESULTS AND CONCLUSION Translating AI methods from the research to the clinical domain is complicated by challenges related to model design and validation studies, medical product regulations, and healthcare providers' reservations regarding AI's efficacy and affordability. However, each of these limitations is also an opportunity for high-impact research that will help to accelerate the clinical adoption of state-of-the-art medical AI. In all cases, establishing and adhering to appropriate reporting standards is an important responsibility that is shared by all of the parties involved in the life cycle of a prospective AI software product.
Collapse
Affiliation(s)
- Anthony J Winder
- Department of Radiology, University of Calgary, Calgary, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Emma Am Stanley
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Souza R, Stanley EAM, Camacho M, Camicioli R, Monchi O, Ismail Z, Wilms M, Forkert ND. A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigm. Front Artif Intell 2024; 7:1301997. [PMID: 38384277 PMCID: PMC10879577 DOI: 10.3389/frai.2024.1301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Distributed learning is a promising alternative to central learning for machine learning (ML) model training, overcoming data-sharing problems in healthcare. Previous studies exploring federated learning (FL) or the traveling model (TM) setup for medical image-based disease classification often relied on large databases with a limited number of centers or simulated artificial centers, raising doubts about real-world applicability. This study develops and evaluates a convolution neural network (CNN) for Parkinson's disease classification using data acquired by 83 diverse real centers around the world, mostly contributing small training samples. Our approach specifically makes use of the TM setup, which has proven effective in scenarios with limited data availability but has never been used for image-based disease classification. Our findings reveal that TM is effective for training CNN models, even in complex real-world scenarios with variable data distributions. After sufficient training cycles, the TM-trained CNN matches or slightly surpasses the performance of the centrally trained counterpart (AUROC of 83% vs. 80%). Our study highlights, for the first time, the effectiveness of TM in 3D medical image classification, especially in scenarios with limited training samples and heterogeneous distributed data. These insights are relevant for situations where ML models are supposed to be trained using data from small or remote medical centers, and rare diseases with sparse cases. The simplicity of this approach enables a broad application to many deep learning tasks, enhancing its clinical utility across various contexts and medical facilities.
Collapse
Affiliation(s)
- Raissa Souza
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Emma A. M. Stanley
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Milton Camacho
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Richard Camicioli
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Oury Monchi
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Matthias Wilms
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Nils D. Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|