1
|
Barzegar S, Rehmani M, Farahmandzadeh M, Absalan G, Karimi B. Solvent-Focused Gas Chromatographic Determination of Thymol and Carvacrol Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction through Solidifying Floating Organic Droplets (USA-DLLME-SFO). Molecules 2024; 29:3931. [PMID: 39203009 PMCID: PMC11357376 DOI: 10.3390/molecules29163931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
An ultrasound-assisted dispersive liquid-liquid microextraction by solidifying floating organic droplets, coupled to a form of temperature-programmed gas chromatography flame ionization detection, has been developed for the extraction and determination of thymol and carvacrol. This method utilizes undecanol as the extraction solvent, offering advantages such as facilitating phase transfer through solidification and enhancing solvent-focusing efficiency. The optimal gas chromatography conditions include a sample injection volume of 0.2 µL, a split ratio of 1:10, and a flow rate of 0.7 mL min-1. The extraction conditions entail an extraction solvent volume of 20 µL, a disperser solvent (acetone) volume of 500 µL, pH 7.0, 7.0% NaCl (3.5 M), a sample volume of 5.0 mL, an ultrasound duration of 10 min, and a centrifuge time of 7.5 min (800 rpm). These conditions enable the achievement of a high and reasonable linear range of 3.5 to 70. 0 μg mL-1 for both thymol and carvacrol. The detection limits are found to be 0.95 and 0.89 μg mL-1, respectively, for thymol and carvacrol. The obtained relative standard deviations, 2.7% for thymol and 2.6% for carvacrol, demonstrate acceptable precision for the purpose of quantitative analysis.
Collapse
Affiliation(s)
- Sedigheh Barzegar
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran; (S.B.)
| | - Mousab Rehmani
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | | | - Ghodratollah Absalan
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran; (S.B.)
| | - Benson Karimi
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
2
|
Fast and highly efficient liquid chromatographic methods for qualification and quantification of antibiotic residues from environmental waste. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Câmara JS, Perestrelo R, Berenguer CV, Andrade CFP, Gomes TM, Olayanju B, Kabir A, M. R. Rocha C, Teixeira JA, Pereira JAM. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules 2022; 27:2953. [PMID: 35566315 PMCID: PMC9101692 DOI: 10.3390/molecules27092953] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (μQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Carolina F. P. Andrade
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Telma M. Gomes
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| | - Basit Olayanju
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (B.O.); (A.K.)
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (B.O.); (A.K.)
- Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka 1207, Bangladesh
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.M.R.R.); (J.A.T.)
- LABBELS–Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José António Teixeira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.M.R.R.); (J.A.T.)
- LABBELS–Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (C.V.B.); (C.F.P.A.); (T.M.G.)
| |
Collapse
|