1
|
Sattar OIA, Abuseada HHM, Ramzy S, Abuelwafa MM. Three spectrophotometric quantitative analysis of bisoprolol fumarate and telmisartan in fixed-dose combination utilizing ratio spectra manipulation methods. Sci Rep 2024; 14:22899. [PMID: 39358387 PMCID: PMC11447042 DOI: 10.1038/s41598-024-72525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Hypertension is a chronic condition with multiple drug regimens. Limiting these medicines is critical to patient compliance. Therefore, bisoprolol and telmisartan were recently developed in a fixed-dose combination to control blood pressure. The UV absorption spectra of bisoprolol and telmisartan overlapped significantly. Thus, three spectrophotometric methods have been developed for simultaneous determination of bisoprolol and telmisartan without prior separation. Method A is ratio difference of ratio spectra (RD), which measures the amplitude difference between (210-224) nm for bisoprolol and between (255-365) nm for telmisartan. Method B, the first derivative of ratio spectra (1DD), measures amplitude signals at 232 and 243 nm for bisoprolol and telmisartan, respectively. Method C is the mean centering of ratio spectra (MC), which measures the mean-centered ratio spectra's values at 223 nm for bisoprolol and 245 nm for telmisartan. The applied methods showed good linearity 2-20 µg/mL for bisoprolol, 4-32 µg/mL for telmisartan, with sufficient accuracy and precision. The methods were sensitive, with LOD values of 0.243 µg/mL and 0.596 µg/mL in RD method, 0.313 µg/mL and 0.914 µg/mL in 1DD method, and 0.406 and 0.707 µg/mL in MC method for bisoprolol and telmisartan, respectively, the methods were validated per ICH criteria. The novel methods are precise and accurate and can be used for routine analysis and quality control of bisoprolol and telmisartan in pure and dosage form. Furthermore, the greenness of the approaches was evaluated using Analytical Greenness assessment (AGREE), and the suggested method received a high greenness score.
Collapse
Affiliation(s)
- Osama I Abdel Sattar
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11751, Cairo, Egypt
| | - Hamed H M Abuseada
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11751, Cairo, Egypt
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11751, Cairo, Egypt
| | - Mahmoud M Abuelwafa
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11751, Cairo, Egypt.
| |
Collapse
|
2
|
Imam MS, Abdelazim AH, Ramzy S, Almrasy AA, Gamal M, Batubara AS. Higher sensitive selective spectrofluorometric determination of ritonavir in the presence of nirmatrelvir: application to new FDA approved co-packaged COVID-19 pharmaceutical dosage and spiked human plasma. BMC Chem 2023; 17:120. [PMID: 37735663 PMCID: PMC10514966 DOI: 10.1186/s13065-023-01030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Ritonavir was recently combined with nirmatrelvir in a new approved co-packaged medication form for the treatment of COVID-19. Quantitative analysis based on fluorescence spectroscopy measurement was extensively used for sensitive determination of compounds exhibited unique fluorescence features. OBJECTIVE The main objective of this work was to develop higher sensitive cost effective spectrofluorometric method for selective determination of ritonavir in the presence of nirmatrelvir in pure form, pharmaceutical tablet as well as in spiked human plasma. METHODS Ritonavir was found to exhibit unique native emission fluorescence at 404 nm when excited at 326 nm. On the other hand, nirmatrelvir had no emission bands when excited at 326 nm. This feature allowed selective determination of ritonavir without any interference from nirmatrelvir. The variables affecting fluorescence intensity of ritonavir were optimized in terms of sensitivity parameters and principles of green analytical chemistry. Ethanol was used a green solvent which provided efficient fluorescence intensity of the cited drug. RESULTS The method was validated in accordance with the ICH Q2 (R1) standards in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and specificity. The described method was successfully applied for ritonavir assay over the concentration range of 2.0-20.0 ng/mL. CONCLUSION Ritonavir determination in the spiked human plasma was successfully done with satisfactory accepted results.
Collapse
Affiliation(s)
- Mohamed S Imam
- Pharmacy Practice Department, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
- Clinical Pharmacy Department, National Cancer Institute, Cairo University, Fom El Khalig Square, Kasr Al-Aini Street, Cairo, 11796, Egypt
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
- Nasr City, Cairo, 11751, Egypt.
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| |
Collapse
|
3
|
Batubara AS, Abdelazim AH, Almrasy AA, Gamal M, Ramzy S. Quantitative analysis of two COVID-19 antiviral agents, favipiravir and remdesivir, in spiked human plasma using spectrophotometric methods; greenness evaluation. BMC Chem 2023; 17:58. [PMID: 37328879 DOI: 10.1186/s13065-023-00967-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of the current work is to develop the first validated green spectrophotometric methods for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir have shown some overlap, making simultaneous determination difficult. Due to the considerable overlap, two ratio spectra manipulating spectrophotometric methods, namely, ratio difference and the first derivative of ratio spectra, enabled the determination of favipiravir and remdesivir in their pure forms and spiked plasma. The ratio spectra of favipiravir and remdesivir were derived by dividing the spectra of each drug by the suitable spectrum of another drug as a divisor to get the ratio spectra. Favipiravir was determined by calculating the difference between 222 and 256 nm of the derived ratio spectra, while calculating the difference between 247 and 271 nm of the derived ratio spectra enabled the determination of remdesivir. Moreover, the ratio spectra of every drug were transformed to the first order derivative using ∆λ = 4 and a scaling factor of 100. The first-order derivative amplitude values at 228 and 251.20 nm enabled the determination of favipiravir and remdesivir, respectively. Regarding the pharmacokinetic profile of favipiravir (Cmax 4.43 µg/mL) and remdesivir (Cmax 3027 ng/mL), the proposed methods have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in plasma matrix. Additionally, the greenness of the described methods was evaluated using three metrics systems: the national environmental method index, the analytical eco-scale, and the analytical greenness metric. The results demonstrated that the described models were in accordance with the environmental characteristics.
Collapse
Affiliation(s)
- Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| |
Collapse
|
4
|
Abdelazim AH, Abdel-Fattah A, Osman AOE, Abdel-Kareem RF, Ramzy S. Spectrophotometric Quantitative Analysis of Aspirin and Vonoprazan Fumarate in Recently Approved Fixed-Dose Combination Tablets Using Ratio Spectra Manipulating Tools. J AOAC Int 2023; 106:490-495. [PMID: 36264114 DOI: 10.1093/jaoacint/qsac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Low-dose aspirin (ASP) is prescribed to millions of people around the world as a secondary preventative strategy for the majority of significant cardiovascular events; however, it carries a substantial risk of gastric ulcer and bleeding. Cabpirin® tablets, which include low-dose ASP and vonoprazan fumarate (VON), are approved in Japan for the treatment of acid-related diseases in patients who require a low dose of ASP but are at risk of ASP-associated gastric ulcers. OBJECTIVE This paper describes the first published quantitative analytical approaches for the determination of ASP and VON. METHOD The normal ultraviolet absorption spectra of ASP and vonoprazan overlap significantly. The ratio spectra of the studied drugs were created and manipulated by ratio difference (RD) and first derivative of ratio spectra approaches. In the RD approach, the differences in the amplitude values between 229 and 283 nm enabled the quantitative analysis of ASP, and the differences in the amplitude values between 255 and 212 nm enabled the quantitative analysis of vonoprazan. In the first derivative of the ratio spectra approach, the created ratio spectra of each drug were transformed to the first-order derivative. ASP could be determined selectively at 237.40 nm without interference from vonoprazan. Moreover, vonoprazan could be determined selectively at 244 nm without interference from ASP. RESULTS The applied approaches were validated according to the ICH guideline, with good results. Linear correlations were obtained for ASP and vonoprazan over concentration ranges of 2-25 and 1-10 µg/mL, respectively. CONCLUSIONS The described methods were optimized, validated, and applied for determination of the studied drugs in the synthetic mixtures and in pharmaceutical tablets without interferences. HIGHLIGHTS Two spectrophotometric ratio spectra manipulating approaches were developed for the determination of the ASP and vonoprazan in their pharmaceutical combination tablets.
Collapse
Affiliation(s)
- Ahmed H Abdelazim
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| | - Ashraf Abdel-Fattah
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| | - Ayman O E Osman
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| | - Rady F Abdel-Kareem
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| | - Sherif Ramzy
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| |
Collapse
|
5
|
Abdelazim AH, Abourehab MAS, Abd Elhalim LM, Almrasy AA, Ramzy S. Different spectrophotometric methods for simultaneous determination of lesinurad and allopurinol in the new FDA approved pharmaceutical preparation; additional greenness evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121868. [PMID: 36113304 DOI: 10.1016/j.saa.2022.121868] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Lesinurad and allopurinol have been formulated in a combined dosage form providing a new challenge for the treatment of gout attacks. Two mathematical based spectrophotometric methods, area under the curve, and artificial neural networks have been developed for simultaneous determination of lesinurad and allopurinol in pure form and in combined pharmaceutical dosage form. Area under the curve has been utilized to resolve the spectral overlap between lesinurad and allopurinol. Values of area under the curve and area absorptivity were measured at two selected wavelength ranges of 242-250 nm and 255-265 nm. Two mathematically constructed equations have been used to determine the concentrations of the drugs under the study. Advanced chemometry based model, artificial neural network, has been developed utilizing the UV spectral data of lesinurad and allopurinol through various defined steps. A five-level, two-factor experimental design was used to construct 25 mixtures. Thirteen mixtures were used to set up the calibration model and 12 mixtures were used to construct a validation set. The artificial neural network model was optimized to enable precise spectrophotometric determination of the drugs under the study. The described mathematically bases spectrophotometric methods have been successfully applied to the determination of lesinurad and allopurinol in the new combined, Duzallo® tablets. Furthermore, the greenness of the described methods was assessed using four different tools namely, the national environmental method index, the analytical eco-scale, the green analytical procedure index and the AGREE evaluation method. The proposed methods showed more adherence to the greenness characters in comparison to the previously reported HPLC method.
Collapse
Affiliation(s)
- Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt.
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Lobna M Abd Elhalim
- Analytical Chemistry Department, Central Administration of Drug Control, Egyptian Drug Authority, 51 Wezaret Al Zeraa Street, Agouza, Giza 12311, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| |
Collapse
|