1
|
Jamali H, Akrami F, Bouakkaz S, Dozois CM. Prevalence of specific serogroups, antibiotic resistance and virulence factors of avian pathogenic Escherichia coli (APEC) isolated from clinical cases: A systematic review and meta-analysis. Microb Pathog 2024; 194:106843. [PMID: 39117015 DOI: 10.1016/j.micpath.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Pathogenic strains of Escherichia coli infecting poultry, commonly called avian pathogenic E. coli (APEC) present significant risks, to the health of both poultry and the general public. This systematic review aimed to examine the prevalence of APEC serotypes, sequence types (ST), phylogenetic groups, virulence factors and antibiotic resistance patterns based on 189 research papers sourced from PubMed, Web of Science, and ProQuest. Then, data were extracted from the selected studies and analyzed to assess the global distribution and characteristics of APEC strains. The metaprop codes in the Meta and Metafor packages of R as implemented in RStudio were then used to conduct meta-analysis. Among APEC strains identified from these different research reports serogroup O78 had the highest overall prevalence (16 %), followed by serogroups O2 (10 %), and O117 (8 %). The most common ST profiles were ST117 (20 %), ST140 (15 %), ST95 (12 %), and ST131 (9 %). ST117 and ST140 are known reservoirs for pathogenic E. coli in humans. Moreover, phylogenetic assessment highlighted the prevalence of phylogroups A, A1, F, D, and B2 among APEC strains indicating diversity in phylogenetic origin within poultry populations. The presence of antimicrobial resistance was notable among APEC strains against antibiotics such as tetracyclines, penicillins, and cephalosporins. This resistance may be linked to use of antimicrobials in poultry production in certain regions presenting challenges for both animal health management and human infection control. Analysis of sequences linked to adherence or virulence indicated that genes encoding adhesins (csg, fimC), iron/metal uptake (sitB, sitC, iroD) and cytotoxicity (estB, hlyF), and serum resistance (traT, iss) were highly prevalent. These factors have been reported to contribute to APEC host colonization and virulence in poultry. In summary, this overview of the characteristics of APEC highlights the pressing importance of monitoring and implementing management approaches to reduce antimicrobial resistance considering that a phylogenetic diversity of E. coli strains causes infections in both poultry and humans and represents a risk to both animal and public health. Further, determining the major conserved aspects and predominant mechanisms of virulence of APEC is critical for improving diagnostics and developing preventative measures to reduce the burden of infection caused by pathogenic E. coli in poultry and lower risks associated with foodborne transmission of E. coli to humans through poultry and poultry products.
Collapse
Affiliation(s)
- Hossein Jamali
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Fariba Akrami
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Souhaib Bouakkaz
- École de Technologie Supérieure, 1100 R. Notre Dame Ouest, Montréal, QC H3C 1K3, Canada
| | - Charles M Dozois
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
2
|
Shabbir MZ, Kariyawasam S, Pierre TA, Dunn PA, Wallner-Pendleton EA, Lu H. Identification, 16S rRNA-based characterization, and antimicrobial profile of Gallibacterium isolates from broiler and layer chickens. J Vet Diagn Invest 2023; 35:13-21. [PMID: 36401513 PMCID: PMC9751461 DOI: 10.1177/10406387221133782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gallibacterium spp., particularly G. anatis, have received much attention as poultry pathogens in recent years. We report here the presence and antimicrobial resistance profile of 69 Gallibacterium isolates obtained from 2,204 diagnostic submissions of broiler and layer chickens in 2019-2021. Gallibacterium-positive chickens had lesions primarily in the respiratory tract, reproductive tract, and related serosal surfaces. Gallibacterium spp. were initially identified based on their typical cultural characteristics on blood agar. The isolates were confirmed by a genus-specific PCR spanning 16S-23S rRNA and MALDI-TOF mass spectrometry. Phylogenetic analysis based on 16S rRNA gene sequence revealed distinct clades. Of the 69 isolates, 68 clustered with the reference strains of G. anatis and 1 with Gallibacterium genomospecies 1 and 2. Antimicrobial susceptibility testing of 58 of the 69 isolates by a MIC method showed variable responses to antimicrobials. The isolates were all susceptible to enrofloxacin, ceftiofur, florfenicol, and gentamicin. There was a high level of susceptibility to trimethoprim-sulfamethoxazole (98.0%), streptomycin (98.0%), amoxicillin (84.0%), sulfadimethoxine (71.0%), and neomycin (71.0%). All of the isolates were resistant to tylosin. There was resistance to penicillin (98.0%), erythromycin (95.0%), clindamycin (94.0%), novobiocin (90.0%), tetracycline (88.0%), oxytetracycline (76.0%), and sulfathiazole (53.0%). A high rate of intermediate susceptibility was observed for spectinomycin (67.0%) and sulfathiazole (40.0%). Our findings indicate a potential role of G. anatis as an important poultry pathogen and cause of subsequent disease, alone or in combination with other pathogens. Continuous monitoring and an antimicrobial susceptibility assay are recommended for effective treatment and disease control.
Collapse
Affiliation(s)
- Muhammad Z. Shabbir
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, USA
| | - Traci A. Pierre
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| | - Patricia A. Dunn
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| | | | - Huaguang Lu
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Gütgemann F, Müller A, Churin Y, Jung A, Braun AS, Yue M, Kehrenberg C. Development of a harmonized method for antimicrobial susceptibility testing of Bordetella avium using broth microdilution and detection of resistance genes. J Appl Microbiol 2021; 132:1775-1787. [PMID: 34564927 DOI: 10.1111/jam.15305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
AIMS In response to a request from the Clinical and Laboratory Standards Institute (CLSI), the objective of this study was to develop a harmonized method for broth microdilution susceptibility testing of Bordetella (B.) avium, the major causative agent of infectious coryza in poultry. METHODS AND RESULTS To find a suitable test medium, growth curves with four epidemiologically unrelated B. avium isolates were created in cation-adjusted Mueller-Hinton broth (CAMHB), CAMHB + 2.5% lysed horse blood and veterinary fastidious medium. All isolates showed good growth in CAMHB, therefore MIC values were determined using this medium and the homogeneity of the values was determined. An essential MIC agreement of 99.7% was calculated. Testing of a larger strain collection (n = 49) for their susceptibility to 24 antimicrobials confirmed the suitability of the tested method and revealed some isolates with elevated MICs of florfenicol (n = 1), streptomycin (n = 2), tetracyclines (n = 5), and trimethoprim/sulfamethoxazole (n = 6). PCR assays detected the resistance genes aadA1, dfrB1, floR, sul1, sul2 and tet(A). CONCLUSIONS The method used enables easy reading and a good reproducibility of MIC values for B. avium. SIGNIFICANCE AND IMPACT OF STUDY Application of the tested method allows harmonized resistance testing of B. avium and identification of isolates with elevated MIC values.
Collapse
Affiliation(s)
- Franziska Gütgemann
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Anja Müller
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Yury Churin
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Ann S Braun
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Min Yue
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Allahghadry T, Ng DYK, Dibaei A, Bojesen AM. Clonal spread of multi-resistant Gallibacterium anatis isolates among Iranian broilers and layers. Vet Res 2021; 52:27. [PMID: 33596999 PMCID: PMC7887718 DOI: 10.1186/s13567-021-00894-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Gallibacterium anatis is a common cause of reproductive tract infection in chickens, which leads to reduced egg production and increased mortality. This study was undertaken to investigate prevalence of G. anatis in 12 poultry flocks originating from Iranian provinces with leading chicken production and to determine genetic diversity, antimicrobial resistance, and the presence of major antigens of the isolates investigated. Out of the 120 chicken tracheal samples collected and tested, 84 (70%) were positive for G. anatis. Genotyping by Pulse Field Gel Electrophoresis and genome sequencing revealed a total of 24 pulsotypes for 71 strains (at a 87% similarity level) and seven genome clusters comprising 21 strains (97% similarity level), respectively. The combination of the two typing methods confirmed the presence of several genotypes originating from a common ancestor affecting poultry yet also suggested that identical clones were shared among chickens within farms and between different farms. The latter finding is to our knowledge the first example of clonal presence of G. anatis in epidemiologically unrelated farms. The 21 sequenced strains were characterized against a panel of commonly used antibiotics and showed lowered sensitivity to tetracycline (76.2%) and enrofloxacin (90.5%). The widespread presence of multiresistant G. anatis isolates calls for non-antibiotic prophylactics. Three major immunogen genes, gtxA, Gab_1309 and Gab_2312 were detected in the isolates indicating these antigens likely represent effective vaccine targets. A conserved sequence of the gtxA gene across a range of epidemiologically independent strains suggests the use of GtxA for future vaccine development purposes.
Collapse
Affiliation(s)
- Toloe Allahghadry
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Duncan Y K Ng
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
| | | | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
El-Adawy H, Bocklisch H, Neubauer H, Hafez HM, Hotzel H. Identification, differentiation and antibiotic susceptibility of Gallibacterium isolates from diseased poultry. Ir Vet J 2018; 71:5. [PMID: 29441195 PMCID: PMC5799919 DOI: 10.1186/s13620-018-0116-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Background Gallibacterium anatis is an opportunistic pathogen of intensively reared poultry causing oophoritis, salpingitis, peritonitis and enteritis. Gallibacterium anatis infection often remains undiagnosed. Recently multi-drug resistant isolates have been described. Methods A newly developed PCR restriction fragment length polymorphism assay targeting the 16S rRNA gene was used to identify and differentiate Gallibacterium isolates from chicken, turkey and partridge samples originating from 18 different geographical locations in Thuringia, Germany. Antimicrobial susceptibility to 19 compounds of different classes was assessed. Results Nineteen Gallibacterium isolates were investigated. In 9 birds (47.4%) Gallibacterium species were isolated exclusively while in 10 birds (52.6%) other bacterial or viral agents could be detected in addition. In one chicken a mixed infection of Gallibacterium anatis and Gallibacterium genomospecies was identified. All isolates were susceptible to apramycin, florfenicol and neomycin and resistant to clindamycin, sulfathiazole and penicillin. Resistance to sulfamethoxim, spectinomycin, tylosin and oxytetracycline was observed in 93.3%, 93.3%, 86.7% and 80.0% of the field strains, respectively. Conclusions The PCR-RFLP assay allows specific detection and differentiation of Gallibacterium spp. from poultry. Antimicrobial resistance of Gallibacterium spp. is highly significant in Thuringian field isolates.
Collapse
Affiliation(s)
- Hosny El-Adawy
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany.,2Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 35516 Egypt
| | | | - Heinrich Neubauer
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| | - Hafez Mohamed Hafez
- 4Institute for Poultry Diseases, Free University Berlin, Königsweg 63, 14163 Berlin, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
6
|
Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front Vet Sci 2017; 4:126. [PMID: 28848739 PMCID: PMC5554362 DOI: 10.3389/fvets.2017.00126] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global health threat, and antimicrobial usage and AMR in animal production is one of its contributing sources. Poultry is one of the most widespread types of meat consumed worldwide. Poultry flocks are often raised under intensive conditions using large amounts of antimicrobials to prevent and to treat disease, as well as for growth promotion. Antimicrobial resistant poultry pathogens may result in treatment failure, leading to economic losses, but also be a source of resistant bacteria/genes (including zoonotic bacteria) that may represent a risk to human health. Here we reviewed data on AMR in 12 poultry pathogens, including avian pathogenic Escherichia coli (APEC), Salmonella Pullorum/Gallinarum, Pasteurella multocida, Avibacterium paragallinarum, Gallibacterium anatis, Ornitobacterium rhinotracheale (ORT), Bordetella avium, Clostridium perfringens, Mycoplasma spp., Erysipelothrix rhusiopathiae, and Riemerella anatipestifer. A number of studies have demonstrated increases in resistance over time for S. Pullorum/Gallinarum, M. gallisepticum, and G. anatis. Among Enterobacteriaceae, APEC isolates displayed considerably higher levels of AMR compared with S. Pullorum/Gallinarum, with prevalence of resistance over >80% for ampicillin, amoxicillin, tetracycline across studies. Among the Gram-negative, non-Enterobacteriaceae pathogens, ORT had the highest levels of phenotypic resistance with median levels of AMR against co-trimoxazole, enrofloxacin, gentamicin, amoxicillin, and ceftiofur all exceeding 50%. In contrast, levels of resistance among P. multocida isolates were less than 20% for all antimicrobials. The study highlights considerable disparities in methodologies, as well as in criteria for phenotypic antimicrobial susceptibility testing and result interpretation. It is necessary to increase efforts to harmonize testing practices, and to promote free access to data on AMR in order to improve treatment guidelines as well as to monitor the evolution of AMR in poultry bacterial pathogens.
Collapse
Affiliation(s)
- Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | - Juan J Carrique-Mas
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Jones KH, Thornton JK, Zhang Y, Mauel MJ. A 5-year retrospective report of Gallibacterium anatis and Pasteurella multocida isolates from chickens in Mississippi. Poult Sci 2014; 92:3166-71. [PMID: 24235226 DOI: 10.3382/ps.2013-03321] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 5-yr retrospective study (November 2006-December 2011) was conducted to determine the isolation frequency of Pasteurella multocida and Gallibacterium anatis and their antibiograms from chickens submitted to the Mississippi Poultry Research and Diagnostic Laboratory. The number of isolations of G. anatis increased over the last 5 yr in broiler and broiler breeder type chickens. For P. multocida, the number of isolations increased from 2006 to 2010, but decreased through 2011 with all isolations being from boiler breeder type chickens. Gallibacterium anatis demonstrated almost complete resistance to novobiocin, tylosin, lincosamide, and tetracycline antimicrobials with moderate to high sensitivity to sulfonamides, fluoroquinolones, and florfenicol. There was intermediate sensitivity for spectinomycin and erythromycin and variable resistance to β-lactam and aminoglycoside antimicrobials. In sharp contrast, P. multocida showed moderate to high sensitivity to β-lactam, novobiocin, and tetracycline antimicrobials, but had antibiograms similar to G. anatis for the other antimicrobials. Sensitivities were determined using minimum inhibitory concentration. This study examines the trends over a 5-yr period of the number of isolates of P. multocida and G. anatis and their sensitivities. These 2 pathogens produce very similar clinical signs and lesions (fowl cholera-like) in breeders despite having extremely antagonistic sensitivity patterns. This study shows the necessity for producers to attempt culture and sensitivity in suspect fowl cholera-like flocks before initiating antimicrobial treatment commonly used with P. multocida for fear that the culprit may actually be the more antimicrobial-resistant G. anatis.
Collapse
Affiliation(s)
- K H Jones
- Poultry Research and Diagnostic Laboratory, and
| | | | | | | |
Collapse
|
8
|
The Anti-Bacterial Effect of Punica granatum Extracts Against Antibiotic Resistant Pasteurella haemolytica. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Rapid and Simple Determination of Sarafloxacin in Egg by Time-Resolved Chemiluminescence. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9522-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Beach NM, Thompson S, Mutnick R, Brown L, Kettig G, Puffenbarger R, Stockwell SB, Miyamoto D, Temple L. Bordetella avium antibiotic resistance, novel enrichment culture, and antigenic characterization. Vet Microbiol 2012; 160:189-96. [PMID: 22721730 DOI: 10.1016/j.vetmic.2012.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/26/2022]
Abstract
Bordetella avium continues to be an economic issue in the turkey industry as the causative agent of bordetellosis, which often leads to serious secondary infections. This study presents a broad characterization of the antibiotic resistance patterns in this diverse collection of B. avium strains collected over the past thirty years. In addition, the plasmid basis for the antibiotic resistance was characterized. The antibiotic resistance pattern allowed the development of a novel enrichment culture method that was subsequently employed to gather new isolates from diseased turkeys and a healthy sawhet owl. While a healthy turkey flock was shown to seroconvert by four weeks-of-age, attempts to culture B. avium from healthy turkey poults were unsuccessful. Western blot of B. avium strains using pooled serum from diseased and healthy commercial turkey flocks revealed both antigenic similarities and differences between strains. In sum, the work documents the continued exposure of commercial turkey flocks to B. avium and the need for development of an effective, inexpensive vaccine to control spread of the disease.
Collapse
Affiliation(s)
- Nathan M Beach
- James Madison University, Harrisonburg, VA 22807, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Marietto Gonçalves G, Andreatti Filho R. SUSCEPTIBILIDADE ANTIMICROBIANA DE AMOSTRAS DE ESCHERICHIA COLI ISOLADAS DE FRANGO INDUSTRIAL (GALLUS GALLUS DOMESTICUS - LINNAEUS, 1758) COM COLIBACILOSE. ARQUIVOS DO INSTITUTO BIOLÓGICO 2010. [DOI: 10.1590/1808-1657v77p7152010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O presente estudo avaliou a susceptibilidade de amostras de Escherichia coli isoladas de quadros de colissepticemia aviária da região centro-oeste paulista pelo Laboratório de Ornitopatologia da FMVZ-UNESP/Botucatu, SP. Constatou-se um grande número de amostras multirresistentes aos antibióticos testados, onde as drogas menos efetivas foram sulfonamida e tetraciclina. Todas as amostras mostraram-se sensíveis a norfloxacina e gentamicina.
Collapse
|