1
|
Mazur-Kuśnirek M, Lipiński K, Antoszkiewicz Z, Śliżewska K. The Effect of Synbiotics and Probiotics on Ochratoxin Concentrations in Blood and Tissues, Health Status, and Gastrointestinal Function in Turkeys Fed Diets Contaminated with Ochratoxin A. Animals (Basel) 2024; 14:3024. [PMID: 39457953 PMCID: PMC11505059 DOI: 10.3390/ani14203024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to evaluate carcass quality and analyze gastrointestinal functional status, ochratoxin A (OTA) accumulation in tissues and organs, and the health status of turkeys fed diets contaminated with OTA and supplemented with synbiotic preparations in comparison with commercial probiotic feed additives. The research involved 120 female BIG 6 turkeys, divided into six treatment groups (five replicates, four birds per replicate). Wheat naturally contaminated with OTA (662.03 μg/kg) was used in turkey diets. Turkeys in group 1 received an OTA-contaminated diet without additives. Groups 2 and 3 received 0.4 g/kg of probiotic preparation BioPlus 2B or Cylactin. Groups 4, 5, and 6 received 0.5 g/kg of synbiotics S1, S2, or S3. The following parameters were monitored: growth performance, carcass quality, gastrointestinal tract structure and digesta pH, health status, and concentrations of OTA in the blood and tissues of turkeys. The study found no significant differences in the growth performance and carcass quality of turkey. However, the introduction of probiotics or synbiotics into OTA-contaminated feed mixtures resulted in a reduced pH of the digesta in certain sections of the turkey digestive tract (p < 0.05). Additionally, the tested synbiotic additives significantly reduced liver weight in turkeys at weeks 6 and 15 (p < 0.05). The addition of probiotic and synbiotic preparations based on lactic acid bacteria strains, inulin, and S. cerevisiae yeasts to OTA-contaminated diets in commercial turkey farming may improve health status (p < 0.05) and reduce mycotoxin accumulation in organs and tissues of poultry (p < 0.05).
Collapse
Affiliation(s)
- Magdalena Mazur-Kuśnirek
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Krzysztof Lipiński
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition, Feed Science and Cattle Breeding, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (K.L.); (Z.A.)
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Łódź, Poland;
| |
Collapse
|
2
|
Deng Y, Wang Y, Liu Y, Yang X, Zhang H, Xue X, Wan Y. Akkermansia muciniphila isolated from forest musk deer ameliorates diarrhea in mice via modification of gut microbiota. Animal Model Exp Med 2024. [PMID: 38828754 DOI: 10.1002/ame2.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The forest musk deer, a rare fauna species found in China, is famous for its musk secretion which is used in selected Traditional Chinese medicines. However, over-hunting has led to musk deer becoming an endangered species, and their survival is also greatly challenged by various high incidence and high mortality respiratory and intestinal diseases such as septic pneumonia and enteritis. Accumulating evidence has demonstrated that Akkermannia muciniphila (AKK) is a promising probiotic, and we wondered whether AKK could be used as a food additive in animal breeding programmes to help prevent intestinal diseases. METHODS We isolated one AKK strain from musk deer feces (AKK-D) using an improved enrichment medium combined with real-time PCR. After confirmation by 16S rRNA gene sequencing, a series of in vitro tests was conducted to evaluate the probiotic effects of AKK-D by assessing its reproductive capability, simulated gastrointestinal fluid tolerance, acid and bile salt resistance, self-aggregation ability, hydrophobicity, antibiotic sensitivity, hemolysis, harmful metabolite production, biofilm formation ability, and bacterial adhesion to gastrointestinal mucosa. RESULTS The AKK-D strain has a probiotic function similar to that of the standard strain in humans (AKK-H). An in vivo study found that AKK-D significantly ameliorated symptoms in the enterotoxigenic Escherichia coli (ETEC)-induced murine diarrhea model. AKK-D improved organ damage, inhibited inflammatory responses, and improved intestinal barrier permeability. Additionally, AKK-D promoted the reconstitution and maintenance of the homeostasis of gut microflora, as indicated by the fact that AKK-D-treated mice showed a decrease in Bacteroidetes and an increase in the proportion of other beneficial bacteria like Muribaculaceae, Muribaculum, and unclassified f_Lachnospiaceae compared with the diarrhea model mice. CONCLUSION Taken together, our data show that this novel AKK-D strain might be a potential probiotic for use in musk deer breeding, although further extensive systematic research is still needed.
Collapse
Affiliation(s)
- Yan Deng
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan Wang
- Shaanxi Institute of Microbiology, Xi'an, China
| | - Ying Liu
- Shaanxi Institute of Microbiology, Xi'an, China
| | - Xiaoli Yang
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shaanxi Institute for Food and Drug Control, Xi'an, China
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaochang Xue
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yi Wan
- Shaanxi Institute of Microbiology, Xi'an, China
| |
Collapse
|
3
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
4
|
Potential Probiotics Role in Excluding Antibiotic Resistance. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5590004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Antibiotic supplementation in feed has been continued for the previous 60 years as therapeutic use. They can improve the growth performance and feed efficiency in the chicken flock. A favorable production scenario could favor intestinal microbiota interacting with antibiotic growth promoters and alter the gut bacterial composition. Antibiotic growth promoters did not show any beneficial effect on intestinal microbes. Scope and Approach. Suitable and direct influence of growth promoters are owed to antimicrobial activities that reduce the conflict between host and intestinal microbes. Unnecessary use of antibiotics leads to resistance in microbes, and moreover, the genes can relocate to microbes including Campylobacter and Salmonella, resulting in a great risk of food poisoning. Key Findings and Conclusions. This is a reason to find alternative dietary supplements that can facilitate production, growth performance, favorable pH, and modulate gut microbial function. Therefore, this review focus on different nutritional components and immune genes used in the poultry industry to replace antibiotics, their influence on the intestinal microbiota, and how to facilitate intestinal immunity to overcome antibiotic resistance in chicken.
Collapse
|
5
|
Shehata AA, Yalçın S, Latorre JD, Basiouni S, Attia YA, Abd El-Wahab A, Visscher C, El-Seedi HR, Huber C, Hafez HM, Eisenreich W, Tellez-Isaias G. Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry. Microorganisms 2022; 10:microorganisms10020395. [PMID: 35208851 PMCID: PMC8877156 DOI: 10.3390/microorganisms10020395] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has been designated as a hidden metabolic ‘organ’ because of its enormous impact on host metabolism, physiology, nutrition, and immune function. The connection between the intestinal microbiota and their respective host animals is dynamic and, in general, mutually beneficial. This complicated interaction is seen as a determinant of health and disease; thus, intestinal dysbiosis is linked with several metabolic diseases. Therefore, tractable strategies targeting the regulation of intestinal microbiota can control several diseases that are closely related to inflammatory and metabolic disorders. As a result, animal health and performance are improved. One of these strategies is related to dietary supplementation with prebiotics, probiotics, and phytogenic substances. These supplements exert their effects indirectly through manipulation of gut microbiota quality and improvement in intestinal epithelial barrier. Several phytogenic substances, such as berberine, resveratrol, curcumin, carvacrol, thymol, isoflavones and hydrolyzed fibers, have been identified as potential supplements that may also act as welcome means to reduce the usage of antibiotics in feedstock, including poultry farming, through manipulation of the gut microbiome. In addition, these compounds may improve the integrity of tight junctions by controlling tight junction-related proteins and inflammatory signaling pathways in the host animals. In this review, we discuss the role of probiotics, prebiotics, and phytogenic substances in optimizing gut function in poultry.
Collapse
Affiliation(s)
- Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Correspondence: (A.A.S.); (G.T.-I.)
| | - Sakine Yalçın
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University (AU), 06110 Ankara, Turkey;
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt;
| | - Youssef A. Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amr Abd El-Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (A.A.E.-W.); (C.V.)
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (A.A.E.-W.); (C.V.)
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Biomedical Centre, Department of Pharmaceutical Biosciences, Uppsala University, SE 75124 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang 212013, China
| | - Claudia Huber
- Bavarian NMR Center, Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Lichtenbegstr. 4, 85748 Garching, Germany; (C.H.); (W.E.)
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany;
| | - Wolfgang Eisenreich
- Bavarian NMR Center, Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Lichtenbegstr. 4, 85748 Garching, Germany; (C.H.); (W.E.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Correspondence: (A.A.S.); (G.T.-I.)
| |
Collapse
|
6
|
Erb L, Lyons A, Poholsky C, Dirks B, Boney J. Effects of direct-fed microbial (Bacillus subtilis C-3102) inclusion on tom turkey production efficiency and intestinal microbial populations. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Khomayezi R, Adewole D. Probiotics, prebiotics, and synbiotics: an overview of their delivery routes and effects on growth and health of broiler chickens. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1988804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rojman Khomayezi
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Bible Hill, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Bible Hill, Canada
| |
Collapse
|
8
|
Lao EJ, Dimoso N, Raymond J, Mbega ER. The prebiotic potential of brewers’ spent grain on livestock’s health: a review. Trop Anim Health Prod 2020; 52:461-472. [DOI: 10.1007/s11250-019-02120-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
|
9
|
Maki JJ, Klima CL, Sylte MJ, Looft T. The Microbial Pecking Order: Utilization of Intestinal Microbiota for Poultry Health. Microorganisms 2019; 7:microorganisms7100376. [PMID: 31547217 PMCID: PMC6843665 DOI: 10.3390/microorganisms7100376] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
The loss of antibiotics as a tool to improve feed efficiency in poultry production has increased the urgency to understand how the microbiota interacts with animals to impact productivity and health. Modulating and harnessing microbiota-host interactions is a promising way to promote poultry health and production efficiencies without antibiotics. In poultry, the microbiome is influenced by many host and external factors including host species, age, gut compartment, diet, and environmental exposure to microbes. Because so many factors contribute to the microbiota composition, specific knowledge is needed to predict how the microbiome will respond to interventions. The effects of antibiotics on microbiomes have been well documented, with different classes of antibiotics having distinctive, specific outcomes on bacterial functions and membership. Non-antibiotic interventions, such as probiotics and prebiotics, target specific bacterial taxa or function to enhance beneficial properties of microbes in the gut. Beneficial bacteria provide a benefit by displacing pathogens and/or producing metabolites (e.g., short chain fatty acids or tryptophan metabolites) that promote poultry health by improving mucosal barrier function or immune function. Microbiota modulation has been used as a tool to reduce pathogen carriage, improve growth, and modulate the immune system. An increased understanding of how the microbiota interacts with animal hosts will improve microbiome intervention strategies to mitigate production losses without the need for antibiotics.
Collapse
Affiliation(s)
- Joel J Maki
- Food Safety Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN 37830, USA.
| | - Cassidy L Klima
- Food Safety Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA 50011, USA.
| | - Matthew J Sylte
- Food Safety Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - Torey Looft
- Food Safety Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
10
|
Arreguin-Nava MA, Hernández-Patlán D, Solis-Cruz B, Latorre JD, Hernandez-Velasco X, Tellez G, El-Ashram S, Hargis BM, Tellez-Isaias G. Isolation and Identification of Lactic Acid Bacteria Probiotic Culture Candidates for the Treatment of Salmonella enterica Serovar Enteritidis in Neonatal Turkey Poults. Animals (Basel) 2019; 9:ani9090696. [PMID: 31533370 PMCID: PMC6770488 DOI: 10.3390/ani9090696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
The effect of Lactobacillus spp.-based probiotic candidates on Salmonella enterica serovar Enteritidis (SE) colonization was evaluated in two separate experiments. In each experiment, sixty-one day-of-hatch female turkey poults were obtained from a local hatchery. In both experiments, poults were challenged via oral gavage with 104 cfu/poult of SE and randomly allocated to one of two groups (n = 30 poults): (1) the positive control group and (2) the probiotic treated group. Heated brooder batteries were used for housing each group separately and poults were allowed ad libitum access to water and unmedicated turkey starter feed. 1 h following the SE challenge, poults were treated with 106 cfu/poult of probiotic culture via oral gavage or phosphate-buffered saline (PBS)to control groups. A total of 24 h post-treatment, poults were euthanized and the ceca and cecal tonsils from twenty poults were collected aseptically for SE recovery. In both trials, a significant reduction in the incidence and log10 cfu/g of SE were observed in poults treated with the probiotic when compared with control poults (p ≤ 0.05). The results of the present study suggest that the administration of this lactic acid-producing bacteria (LAB)-based probiotic 1 h after an SE challenge can be useful in reducing the cecal colonization of this pathogen in neonatal poults.
Collapse
Affiliation(s)
| | - Daniel Hernández-Patlán
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli Estado de México 54714, Mexico; (D.H.-P.); (B.S.-C.)
| | - Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli Estado de México 54714, Mexico; (D.H.-P.); (B.S.-C.)
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (B.M.H.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Cd. de Mexico 04510, Mexico;
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (B.M.H.)
| | - Saeed El-Ashram
- School of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong, China;
- Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (B.M.H.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (B.M.H.)
- Correspondence:
| |
Collapse
|
11
|
Markowiak P, Śliżewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog 2018; 10:21. [PMID: 29930711 PMCID: PMC5989473 DOI: 10.1186/s13099-018-0250-0] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/26/2018] [Indexed: 12/15/2022] Open
Abstract
Along with the intensive development of methods of livestock breeding, breeders' expectations are growing concerning feed additives that would guarantee such results as accelerating growth rate, protection of health from pathogenic infections and improvement of other production parameters such as: absorption of feed and quality of meat, milk, eggs. The main reason for their application would be a strive to achieve some beneficial effects comparable to those of antibiotic-based growth stimulators, banned on 01 January 2006. High hopes are being associated with the use of probiotics, prebiotics and synbiotics. Used mainly for maintenance of the equilibrium of the intestinal microbiota of livestock, they turn out to be an effective method in fight against pathogens posing a threat for both animals and consumers. This paper discusses definitions of probiotics, prebiotics and synbiotics. Criteria that have to be met by those kinds of formulas are also presented. The paper offers a list of the most commonly used probiotics and prebiotics and some examples of their combinations in synbiotic formulas used in animal feeding. Examples of available study results on the effect of probiotics, prebiotics and synbiotics on animal health are also summarised.
Collapse
Affiliation(s)
- Paulina Markowiak
- Department of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, ul. Wólczańska 171/173, 90-924 Lodz, Poland
| | - Katarzyna Śliżewska
- Department of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, ul. Wólczańska 171/173, 90-924 Lodz, Poland
| |
Collapse
|
12
|
Pineda-Quiroga C, Atxaerandio R, Ruiz R, García-Rodríguez A. Effects of dry whey powder alone or combined with calcium butyrate on productive performance, duodenal morphometry, nutrient digestibility, and ceca bacteria counts of broiler chickens. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Teague K, Graham L, Dunn J, Cheng H, Anthony N, Latorre J, Menconi A, Wolfenden R, Wolfenden A, Mahaffey B, Baxter M, Hernandez-Velasco X, Merino-Guzman R, Bielke L, Hargis B, Tellez G. In ovo evaluation of FloraMax®-B11 on Marek’s disease HVT vaccine protective efficacy, hatchability, microbiota composition, morphometric analysis, and Salmonella enteritidis infection in broiler chickens. Poult Sci 2017; 96:2074-2082. [DOI: 10.3382/ps/pew494] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
|
14
|
Impact of Enteric Health and Mucosal Permeability on Skeletal Health and Lameness in Poultry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1033:185-197. [PMID: 29101656 DOI: 10.1007/978-3-319-66653-2_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intestinal barrier leakage and/or altered gut microbial composition has been shown to markedly impact both osteoblast and osteoclast activities, systemically through circulation of gut immune cells and cytokines and locally by causing inflammation of extraintestinal organs such as the liver and bone marrow. Mild cases of heightened intestinal inflammation can cause bone loss in male mice in the absence of any overt nutritional deficiencies or weight loss, which has also been shown in chickens that have been infected with Salmonella. For poultry, ingredients selected for feed formulation have also a significant impact on gut health, intestinal microbiota, bone quality, and performance parameters. Consumption of diets with a high content of soluble non-starch polysaccharides (NSP) can affect bone quality parameters by reducing the amount of conjugated bile acids in the intestine, therefore diminishing the absorption of fat-soluble vitamins such as vitamin D and minerals like calcium and phosphorus. Recent enteric inflammation studies have shown that high NSP-containing diets have effects on intestinal viscosity, bone mineral content, and breaking strength, along with increased fluorescein isothiocyanate-dextran (FITC-d) leakage. Other skeletal diseases, such as bacterial chondronecrosis with osteomyelitis and enterococcal spondylitis, have a microbial component that is associated with increased mucosal permeability of the gut. Probiotics targeted toward control of enteric inflammation, either created through infectious disease or poor diet, may serve as a strategy for control of predisposing factors that lead to bone disorders.
Collapse
|
15
|
Agazzi A. The Beneficial Role of Probiotics in Monogastric Animal Nutrition and Health. ACTA ACUST UNITED AC 2015. [DOI: 10.15406/jdvar.2015.02.00041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Remus A, Hauschild L, Andretta I, Kipper M, Lehnen C, Sakomura N. A meta-analysis of the feed intake and growth performance of broiler chickens challenged by bacteria. Poult Sci 2014; 93:1149-58. [DOI: 10.3382/ps.2013-03540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Dhama K, Tiwari R, Khan RU, Chakrabort S, Gopi M, Karthik K, Saminathan M, Desingu PA, Sunkara LT. Growth Promoters and Novel Feed Additives Improving Poultry Production and
Health, Bioactive Principles and Beneficial Applications: The Trends and Advances-A
Review. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.129.159] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Menconi A, Kallapura G, Latorre JD, Morgan MJ, Pumford NR, Hargis BM, Tellez G. Identification and characterization of lactic Acid bacteria in a commercial probiotic culture. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2014; 33:25-30. [PMID: 24936379 PMCID: PMC4034328 DOI: 10.12938/bmfh.33.25] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/28/2013] [Indexed: 11/05/2022]
Abstract
The aim of the present study was to describe the identification and characterization (physiological properties) of two strains of lactic acid bacteria (LAB 18 and 48) present in a commercial probiotic culture, FloraMax(®)-B11. Isolates were characterized morphologically, and identified biochemically. In addition, the MIDI System ID, the Biolog ID System, and 16S rRNA sequence analyses for identification of LAB 18 and LAB 48 strains were used to compare the identification results. Tolerance and resistance to acidic pH, high osmotic concentration of NaCl, and bile salts were tested in broth medium. In vitro assessment of antimicrobial activity against enteropathogenic bacteria and susceptibility to antibiotics were also tested. The results obtained in this study showed tolerance of LAB 18 and LAB 48 to pH 3.0, 6.5% NaCl and a high bile salt concentration (0.6%). Both strains evaluated showed in vitro antibacterial activity against Salmonella enterica serovar Enteritidis, Escherichia coli (O157:H7), and Campylobacter jejuni. These are important characteristics of lactic acid bacteria that should be evaluated when selecting strains to be used as probiotics. Antimicrobial activity of these effective isolates may contribute to efficacy, possibly by direct antimicrobial activity in vivo.
Collapse
Affiliation(s)
- Anita Menconi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Gopala Kallapura
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Marion J Morgan
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Neil R Pumford
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
19
|
Ghareeb K, Awad W, Mohnl M, Porta R, Biarnés M, Böhm J, Schatzmayr G. Evaluating the efficacy of an avian-specific probiotic to reduce the colonization ofCampylobacter jejuni in broiler chickens. Poult Sci 2012; 91:1825-32. [DOI: 10.3382/ps.2012-02168] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Wang L, Zhang T, Wen C, Jiang Z, Wang T, Zhou Y. Protective effects of zinc-bearing clinoptilolite on broilers challenged withSalmonella pullorum. Poult Sci 2012; 91:1838-45. [DOI: 10.3382/ps.2012-02284] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Tellez G, Pixley C, Wolfenden R, Layton S, Hargis B. Probiotics/direct fed microbials for Salmonella control in poultry. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.03.047] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Higgins SE, Wolfenden AD, Tellez G, Hargis BM, Porter TE. Transcriptional profiling of cecal gene expression in probiotic- and Salmonella-challenged neonatal chicks. Poult Sci 2011; 90:901-13. [PMID: 21406379 DOI: 10.3382/ps.2010-00907] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Probiotics are currently used to improve health and reduce enteric pathogens in poultry. However, the mechanisms by which they reduce or prevent disease are not known. Salmonella are intracellular pathogens that cause acute gastroenteritis in humans, and infections by nontyphoid species of Salmonella also can result in diarrhea, dehydration, and depression in poultry. Frequently, however, no clinical signs of infection are apparent in poultry flocks. In this study, day-of-hatch chicks were challenged with Salmonella enterica serovar Enteritidis (SE) and treated 1 h later with a poultry-derived, Lactobacillus-based probiotic culture (FloraMax-B11, Pacific Vet Group USA Inc., Fayetteville, AR). Cecae were collected 12 and 24 h posttreatment for Salmonella detection and RNA isolation for microarray analysis of gene expression. At both 12 and 24 h, SE was significantly reduced in chicks treated with the probiotic as compared with the birds challenged with only SE (P < 0.05). Microarray analysis revealed gene expression differences among all treatment groups. At 12 h, 170 genes were expressed at significantly different levels (P < 0.05), with a minimum difference in expression of 1.2-fold. At 24 h, the number of differentially regulated genes with a minimum 1.2-fold change was 201. Pathway analysis revealed that at both time points, genes associated with the nuclear factor kappa B complex, as well as genes involved in apoptosis, were significantly regulated. Based on this analysis, probiotic-induced differential regulation of the genes growth arrest-specific 2 (GAS2) and cysteine-rich, angiogenic inducer, 61 (CYR61) may result in increased apoptosis in the cecae of chicks. Because Salmonella is an intracellular pathogen, we suggest that increased apoptosis may be a mechanism by which the probiotic culture reduces Salmonella infection.
Collapse
Affiliation(s)
- S E Higgins
- Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, USA.
| | | | | | | | | |
Collapse
|
23
|
Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 2010; 141 Suppl 1:S98-108. [DOI: 10.1016/j.ijfoodmicro.2010.03.039] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/19/2022]
|
24
|
Higgins JP, Higgins SE, Wolfenden AD, Henderson SN, Torres-Rodriguez A, Vicente JL, Hargis BM, Tellez G. Effect of lactic acid bacteria probiotic culture treatment timing on Salmonella Enteritidis in neonatal broilers. Poult Sci 2010; 89:243-7. [PMID: 20075275 DOI: 10.3382/ps.2009-00436] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, a series of experiments were conducted to evaluate the ability of a combination of 3 ATCC lactobacilli (LAB3) or a commercially available probiotic culture (PROB) to reduce Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) in broiler chicks. Additionally, we varied the timing of PROB administration in relationship to Salmonella challenge and determined the influence on recovery of enteric Salmonella. In experiments 1 to 3, chicks were randomly assigned to treatment groups and were then challenged via oral gavage with Salmonella Enteritidis. Chicks were treated 1 h after Salmonella Enteritidis challenge with LAB3 or PROB. Twenty-four hours posttreatment, cecal tonsils were collected for recovery of enteric Salmonella. In experiments 4 to 7, day-of-hatch chicks were randomly assigned to treatment groups and were then treated with PROB via oral gavage and placed into pens. Chicks were challenged with Salmonella Enteritidis 24 h after treatment via oral gavage. At 24 h after Salmonella Enteritidis challenge, cecal tonsils were collected and recovery of enteric Salmonella was determined. In experiments 8 to 10, 1-d-old chicks were randomly assigned to treatment groups and were then challenged via oral gavage with Salmonella Enteritidis and placed into pens. Chicks were treated 24 h after challenge with PROB via oral gavage. Twenty-four hours post PROB treatment, cecal tonsils were collected and enriched as described above. It was found that PROB significantly reduced cecal Salmonella Enteritidis recovery 24 h after treatment as compared with controls or LAB3-treated chicks in experiments 1 to 3 (P<0.05). Administration of PROB 24 h before Salmonella Enteritidis challenge significantly reduced recovery of Salmonella Enteritidis in 2 out of 4 experiments and no reduction in cecal Salmonella Enteritidis was observed when chicks were challenged with Salmonella Enteritidis and treated 24 h later with PROB. These data demonstrate that PROB more effectively reduced Salmonella Enteritidis than LAB3, and the timing of PROB treatment affects Salmonella Enteritidis-associated reductions.
Collapse
Affiliation(s)
- J P Higgins
- Laboratory of Tumor Immunology and Biology, National Cancer Institute/National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gaggìa F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010; 141 Suppl 1:S15-28. [PMID: 20382438 DOI: 10.1016/j.ijfoodmicro.2010.02.031] [Citation(s) in RCA: 446] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/04/2010] [Accepted: 02/28/2010] [Indexed: 01/16/2023]
Abstract
Recent outbreaks of food-borne diseases highlight the need for reducing bacterial pathogens in foods of animal origin. Animal enteric pathogens are a direct source for food contamination. The ban of antibiotics as growth promoters (AGPs) has been a challenge for animal nutrition increasing the need to find alternative methods to control and prevent pathogenic bacterial colonization. The modulation of the gut microbiota with new feed additives, such as probiotics and prebiotics, towards host-protecting functions to support animal health, is a topical issue in animal breeding and creates fascinating possibilities. Although the knowledge on the effects of such feed additives has increased, essential information concerning their impact on the host are, to date, incomplete. For the future, the most important target, within probiotic and prebiotic research, is a demonstrated health-promoting benefit supported by knowledge on the mechanistic actions. Genomic-based knowledge on the composition and functions of the gut microbiota, as well as its deviations, will advance the selection of new and specific probiotics. Potential combinations of suitable probiotics and prebiotics may prove to be the next step to reduce the risk of intestinal diseases and remove specific microbial disorders. In this review we discuss the current knowledge on the contribution of the gut microbiota to host well-being. Moreover, we review available information on probiotics and prebiotics and their application in animal feeding.
Collapse
Affiliation(s)
- Francesca Gaggìa
- Department of Agroenvironmental Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|