Lefcourt AM, Meisinger JJ. Effect of adding alum or zeolite to dairy slurry on ammonia volatilization and chemical composition.
J Dairy Sci 2001;
84:1814-21. [PMID:
11518305 DOI:
10.3168/jds.s0022-0302(01)74620-6]
[Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of cost-effective amendments for treating dairy slurry has become a critical problem as the number of cows on farms continues to grow and the acreage available for manure spreading continues to shrink. To determine effectiveness and optimal rates of addition of either alum or zeolite to dairy slurry, we measured ammonia emissions and resulting chemical changes in the slurry in response to the addition of amendments at 0.4, 1.0, 2.5, and 6.25% by weight. Ammonia volatilization over 96 h was measured with six small wind tunnels with gas scrubbing bottles at the inlets and outlets. Manure samples from the start and end of trials were analyzed for total nitrogen and phosphorus, and were extracted with 0.01 M CaCl2, 1.0 M KCl, and water with the extracts analyzed for ammonium nitrogen, phosphorous, aluminum, and pH. The addition of 6.25% zeolite or 2.5% alum to dairy slurry reduced ammonia emissions by nearly 50 and 60%, respectively. Alum treatment retained ammonia by reducing the slurry pH to 5 or less. In contrast, zeolite, being a cation exchange medium, adsorbed ammonium and reduced dissolved ammonia gas. In addition, alum essentially eliminated soluble phosphorous. Zeolite also reduced soluble phosphorous by over half, but the mechanism for this reduction is unclear. Alum must be carefully added to slurry to avoid effervescence and excess additions, which can increase soluble aluminum in the slurry. The use of alum or zeolites as on-farm amendment to dairy slurry offers the potential for reducing ammonia emissions and soluble phosphorus in dairy slurry.
Collapse