1
|
Balakrishnan KN, Ramiah SK, Zulkifli I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals (Basel) 2023; 13:ani13020317. [PMID: 36670857 PMCID: PMC9854570 DOI: 10.3390/ani13020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Compared to other animal species, production has dramatically increased in the poultry sector. However, in intensive production systems, poultry are subjected to stress conditions that may compromise their well-being. Much like other living organisms, poultry respond to various stressors by synthesising a group of evolutionarily conserved polypeptides named heat shock proteins (HSPs) to maintain homeostasis. These proteins, as chaperones, play a pivotal role in protecting animals against stress by re-establishing normal protein conformation and, thus, cellular homeostasis. In the last few decades, many advances have been made in ascertaining the HSP response to thermal and non-thermal stressors in poultry. The present review focuses on what is currently known about the HSP response to thermal and non-thermal stressors in poultry and discusses the factors that modulate its induction and regulatory mechanisms. The development of practical strategies to alleviate the detrimental effects of environmental stresses on poultry will benefit from detailed studies that describe the mechanisms of stress resilience and enhance our understanding of the nature of heat shock signalling proteins and gene expression.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Idrus Zulkifli
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-4882
| |
Collapse
|
2
|
Teyssier JR, Brugaletta G, Sirri F, Dridi S, Rochell SJ. A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Front Physiol 2022; 13:943612. [PMID: 36003648 PMCID: PMC9393371 DOI: 10.3389/fphys.2022.943612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
With the growing global demand for animal protein and rising temperatures caused by climate change, heat stress (HS) is one of the main emerging environmental challenges for the poultry industry. Commercially-reared birds are particularly sensitive to hot temperatures, so adopting production systems that mitigate the adverse effects of HS on bird performance is essential and requires a holistic approach. Feeding and nutrition can play important roles in limiting the heat load on birds; therefore, this review aims to describe the effects of HS on feed intake (FI) and nutrient digestibility and to highlight feeding strategies and nutritional solutions to potentially mitigate some of the deleterious effects of HS on broiler chickens. The reduction of FI is one of the main behavioral changes induced by hot temperatures as birds attempt to limit heat production associated with the digestion, absorption, and metabolism of nutrients. Although the intensity and length of the heat period influences the type and magnitude of responses, reduced FI explains most of the performance degradation observed in HS broilers, while reduced nutrient digestibility appears to only explain a small proportion of impaired feed efficiency following HS. Targeted feeding strategies, including feed restriction and withdrawal, dual feeding, and wet feeding, have showed some promising results under hot temperatures, but these can be difficult to implement in intensive rearing systems. Concerning diet composition, feeding increased nutrient and energy diets can potentially compensate for decreased FI during HS. Indeed, high energy and high crude protein diets have both been shown to improve bird performance under HS conditions. Specifically, positive results may be obtained with increased added fat concentrations since lipids have a lower thermogenic effect compared to proteins and carbohydrates. Moreover, increased supplementation of some essential amino acids can help support increased amino acid requirements for maintenance functions caused by HS. Further research to better characterize and advance these nutritional strategies will help establish economically viable solutions to enhance productivity, health, welfare, and meat quality of broilers facing HS.
Collapse
Affiliation(s)
- Jean-Rémi Teyssier
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Giorgio Brugaletta
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Samuel J. Rochell
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
3
|
Kpomasse CC, Oke OE, Houndonougbo FM, Tona K. Broiler production challenges in the tropics: A review. Vet Med Sci 2021; 7:831-842. [PMID: 33559980 PMCID: PMC8136938 DOI: 10.1002/vms3.435] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
Under tropical climate, broiler production is encumbered by several constraints which make it difficult for them to attain their genetic potential. The scarcity and high price of poultry feed and veterinary services and the harsh environmental conditions with respect to thermal stress are some of the challenges that hinder optimal growth of the birds. Limited availability of feedstuffs, including crucial feed ingredients like maize and oil seedcakes, is an important challenge to the sector, since feed still represents a major cost of producing broiler chickens. Additionally, the problem of climate change, which has become a global concern, is the main problem in broiler production under hot and humid climate. Under high ambient temperature, feed intake decreases, carbohydrates metabolism and protein synthesis efficiency are disturbed. Lipid utilization is lower and glucose or insulin homeostasis is altered while fat deposition and oxidative stress increases. Several strategies are used to ameliorate the effect of heat stress in poultry. The objective of this review was to summarize the challenge in broiler production under hot and humid climate and different approaches to fight heat stress in poultry.
Collapse
Affiliation(s)
- Cocou Claude Kpomasse
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
| | - Oyegunle Emmanuel Oke
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo.,Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Kokou Tona
- Regional Center of Excellence on Poultry Sciences (CERSA), University of Lome, Lome, Togo
| |
Collapse
|
4
|
|
5
|
|
6
|
Saeed M, Abbas G, Alagawany M, Kamboh AA, Abd El-Hack ME, Khafaga AF, Chao S. Heat stress management in poultry farms: A comprehensive overview. J Therm Biol 2019; 84:414-425. [PMID: 31466781 DOI: 10.1016/j.jtherbio.2019.07.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/04/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023]
Abstract
Heat stress causes significant economic losses in poultry production, especially in tropical and arid regions of the world. Several studies have investigated the effects of heat stress on the welfare and productivity of poultry. The harmful impacts of heat stress on different poultry types include decreased growth rates, appetites, feed utilization and laying and impaired meat and egg qualities. Recent studies have focused on the deleterious influences of heat stress on bird behaviour, welfare and reproduction. The primary strategies for mitigating heat stress in poultry farms have included feed supplements and management, but the results have not been consistent. This review article discusses the physiological effects of heat stress on poultry health and production and various management and nutritional approaches to cope with it.
Collapse
Affiliation(s)
- Muhammad Saeed
- College of Animal Sciences and Technology, Northwest A & F University, Yangling, China; Department of Poultry Science, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Ghulam Abbas
- Department of Animal Production, Riphah College of Veterinary Sciences, Lahore, Pakistan.
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asghar Ali Kamboh
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh Province, Pakistan
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Sun Chao
- College of Animal Sciences and Technology, Northwest A & F University, Yangling, China.
| |
Collapse
|
7
|
Awad EA, Idrus Z, Soleimani Farjam A, Bello AU, Jahromi MF. Growth performance, duodenal morphology and the caecal microbial population in female broiler chickens fed glycine-fortified low protein diets under heat stress conditions. Br Poult Sci 2018; 59:340-348. [PMID: 29433333 DOI: 10.1080/00071668.2018.1440377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. This study was undertaken to examine the effect of feeding glycine (Gly)-fortified low protein (LP) diets on the growth performance, duodenal morphology and caecal microbial populations of broiler chickens raised under unheated, cyclic or constant heat stress environmental conditions. 2. From d 1 to 21 (starter phase), an equivalent number of birds were fed either a normal protein (NP) diet or a LP diet fortified with Gly. From d 22 to 42 (grower phase), an equivalent number of birds from each starter diet were distributed to one of the following dietary groups: (i) an NP diet during the starter and grower phases (NPNP), (ii) an NP diet during the starter phase and a LP diet during the grower phase (NPLP), (iii) an LP diet during the starter phase and an NP diet during the grower phase (LPNP) or (iv) LP diets during both phases (LPLP). 3. Commencing from d 22, an equivalent number of birds from each dietary group were exposed to (i) 23 ± 1°C throughout (unheated), (ii) 34 ± 1°C for 7 h each day from 10:00 to 17:00 (cyclic heat) or (iii) 34 ± 1°C throughout (constant heat). 4. Feeding the LP diet during the starter phase resulted in feed intake (FI), weight gain (WG), feed conversion ratios (FCR) and energy efficiency ratios (EER) similar to those for the NP diet. The birds fed the LP diet had a significantly higher protein efficiency ratio (PER) compared with the birds fed the NP diet. 5. During the grower phase, there were significant diet × temperature interactions for F, WG, FCR, PER, EER, villus height, crypt depth and caecal Clostridia. The birds fed the NPLP and LPLP diets had lower FI, WG and EER, higher FCR, shorter villus height and crypt depth and higher caecal Clostridia compared with the birds fed LPNP and NPNP diets under constant heat stress. However, feeding birds the NPLP and LPLP diets resulted in FI, WG, EER, FCR, morphology parameters and caecal Clostridia equivalent to the birds fed LPNP and NPNP diets, as well as improved PER, under unheated and cyclic heat stress conditions. 6. In conclusion, our results indicate that Gly-fortified LP diets can be fed to broilers under normal and acute heat stress environmental conditions without any adverse effects on performance. However, the use of such LP diets can be detrimental to broilers under chronic heat stress conditions.
Collapse
Affiliation(s)
- E A Awad
- a Institute of Tropical Agriculture and Food Security , Universiti Putra Malaysia , Serdang , Malaysia.,b Department of Poultry Production , University of Khartoum , Khartoum North , Sudan
| | - Z Idrus
- a Institute of Tropical Agriculture and Food Security , Universiti Putra Malaysia , Serdang , Malaysia.,c Department of Animal Science , Universiti Putra Malaysia , Serdang , Malaysia.,d Halal Products Research Institute , Universiti Putra Malaysia , Serdang , Malaysia
| | - A Soleimani Farjam
- a Institute of Tropical Agriculture and Food Security , Universiti Putra Malaysia , Serdang , Malaysia
| | - A U Bello
- a Institute of Tropical Agriculture and Food Security , Universiti Putra Malaysia , Serdang , Malaysia
| | - M F Jahromi
- a Institute of Tropical Agriculture and Food Security , Universiti Putra Malaysia , Serdang , Malaysia
| |
Collapse
|
8
|
Cadirci S, Koncagul S. Possible Effects of Delivering Methionine to Broilers in Drinking Water at Constant Low and High Environmental Temperatures. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Awad EA, Zulkifli I, Farjam AS, Chwen LT. Amino Acids Fortification of Low-protein Diet for Broilers Under Tropical Climate. 2. Nonessential Amino Acids and Increasing Essential Amino Acids. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Liu QW, Feng JH, Chao Z, Chen Y, Wei LM, Wang F, Sun RP, Zhang MH. The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers. J Anim Physiol Anim Nutr (Berl) 2015; 100:301-8. [PMID: 26249142 DOI: 10.1111/jpn.12368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/05/2015] [Indexed: 11/29/2022]
Abstract
This study was undertaken to investigate the effects of ambient temperature, crude protein levels and their interaction on performance and serum biochemical parameters of broiler chickens. A total of 216 Arbor Acre broiler chickens (108 males and 108 females) were used in a 2 × 3 factorial arrangement and randomly reared at two temperatures (normal temperature: 23 °C; daily cyclic high temperature: 28-32 °C) and fed on three diets with different crude protein levels (153.3, 183.3 or 213.3 g/kg, with constant essential amino acids) from 28 to 42 days of age. Daily cyclic high ambient temperature decreased final body weight, average daily weight gain, average daily feed intake and serum total protein contents (p < 0.001, p < 0.001, p < 0.001, p = 0.008 respectively), but increased feed/gain, mortality, respiratory rate, rectal temperature, serum uric acid contents and serum creatine kinase activity (p = 0.008, p = 0.003, p < 0.0001, p < 0.0001, p < 0.0001, p = 0.003 respectively), irrespective of crude protein levels. At the ambient temperature, reducing crude protein levels resulted in an increase in feed/gain (p < 0.001), but a decrease in serum total protein and uric acid contents. Only serum creatine kinase activity in broiler chickens was interacted by daily cyclic high ambient temperature and dietary crude protein levels (p = 0.003). These results indicated that daily cyclic high ambient temperature had a great effect on performance and serum biochemical parameters in broiler chickens, whereas dietary crude protein levels affected them partially.
Collapse
Affiliation(s)
- Q W Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - J H Feng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Z Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Y Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L M Wei
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - F Wang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - R P Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - M H Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Ratriyanto A, Indreswari R, . S. Effects of Protein Levels and Supplementation of Methyl Group Donor on Nutrient Digestibility and Performance of Broiler Chickens in the Tropics. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ijps.2014.575.581] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Dozier W, Corzo A, Kidd M, Tillman P, Purswell J, Kerr B. Digestible lysine responses of male broilers from 14 to 28 days of age subjected to different environmental conditions. J APPL POULTRY RES 2009. [DOI: 10.3382/japr.2009-00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Faria Filho DE, Rosa PS, Torres KAA, Macari M, Furlan RL. Response surface models to predict broiler performance and applications for economic analysis. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2008. [DOI: 10.1590/s1516-635x2008000200009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - PS Rosa
- Embrapa Suínos e Aves, Brasil
| | | | - M Macari
- Universidade Estadual Paulista, Brasil
| | - RL Furlan
- Universidade Estadual Paulista, Brasil
| |
Collapse
|
14
|
Response of Laying Japanese Quail to Dietary Calcium Levels at Two Levels of Energy. J Poult Sci 2006. [DOI: 10.2141/jpsa.43.351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|