1
|
Characteristics and Traceability Analysis of Microbial Assemblage in Fine Particulate Matter from a Pig House. Animals (Basel) 2023; 13:ani13061058. [PMID: 36978598 PMCID: PMC10044456 DOI: 10.3390/ani13061058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Fine particulate matter (PM2.5) can carry numerous substances and penetrate deep into the respiratory tract due to its small particle size; associated harmful microorganisms are suspected to increase health risks for humans and animals. To find out the microbial compositions of PM2.5 in piggeries, their interaction and traceability, we collected PM2.5 samples from a piggery while continuously monitoring the environmental indicators. We also identified pathogenic bacteria and allergens in the samples using high-throughput sequencing technology. We analyzed the microbial differences of PM2.5 samples at different heights and during different times of day and investigated the microbial dynamics among the PM2.5 samples. To better understand the interaction between microorganisms and environmental factors among different microbial communities, we applied the network analysis method to identify the correlation among various variables. Finally, SourceTracker, a commonly used microbial traceability tool, was used to predict the source of airborne microorganisms in the pig house. We identified 14 potential pathogenic bacteria and 5 allergens from PM2.5 in the pig houses, of which Acinetobacter was the dominant bacterium in all samples (relative abundance > 1%), which warrants attention. We found that bacteria and fungi directly affected the the microbial community. The bacterial community mainly played a positive role in the microbial community. Environmental variables mainly indirectly and positively affected microbial abundance. In the SourceTracker analysis using fecal matter and feed as sources and PM2.5 sample as sink, we found that fecal matter made the greatest contribution to both bacterial and fungal components of PM2.5. Our findings provide important insights into the potential risks of pathogens in PM2.5 to human and animal health and their main sources.
Collapse
|
2
|
Tang J, Li W, Zhou Q, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Jiang X, Zhao H, Wu D, Trabalza-Marinucci M, Che L. Effect of heating, microbial fermentation, and enzymatic hydrolysis of soybean meal on growth performance, nutrient digestibility, and intestinal microbiota of weaned piglets. J Anim Sci 2023; 101:skad384. [PMID: 37962419 DOI: 10.1093/jas/skad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
The macromolecular proteins, anti-nutritional factors, and allergens contained in soybean meal (SBM) have a negative impact on the growth of weaned piglets. The objective of this study was to investigate the effects of heating, microbial fermentation, and enzymatically hydrolyzed SBM on the growth performance, nutrient digestibility, serum biochemistry, intestinal morphology, volatile fatty acids, and microbiota of weaned piglets. After the preparation of soaked SBM (SSBM), enzymatically hydrolyzed SBM (ESBM), and microbial fermented and enzymatically hydrolyzed SBM (MESBM), 72 weaned piglets were randomly allocated to three groups for a 21-d trial. In the three groups, 17% of conventional SBM in basal corn-soybean meal diet was replaced by an equivalent amount of SSBM (control group), ESBM, or MESBM. The results showed that the contents of glycinin, β-conglycinin, trypsin inhibitor, and proteins above 20 kDa were significantly decreased in ESBM and MESBM, compared with SSBM, and the surface of ESBM and MESBM had more pores and fragmented structure. In the second week and throughout the entire experimental period, the diarrhea index was reduced (P < 0.01) in ESBM and MESBM in contrast with SSBM. Furthermore, the inclusion of ESBM and MESBM in the diet improved the apparent total tract digestibility of dry matter and crude protein (P < 0.05), and increased the abundances of the genera Lactobacillus and Clostridium_sensu_stricto_1, respectively. Metagenomic sequencing further identified that members of six species of Proteobacteria, four species of Clostridiales, and three species of Negativiautes were enriched in the colon of piglets fed MESBM, while two bacterial species, Lachnoclostridium and Lactobacillus_points, were enriched in the colon of piglets fed ESBM. In conclusion, replacing SSBM with ESBM or MESBM in the diet decreased the diarrhea index, which could be associated with improved nutrient digestibility and microbial composition.
Collapse
Affiliation(s)
- Jiayong Tang
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Wentao Li
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Qiang Zhou
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Yan Lin
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Bin Feng
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - De Wu
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | | | - Lianqiang Che
- Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| |
Collapse
|
3
|
Cullen JT, Lawlor PG, Cormican P, Gardiner GE. Microbial Quality of Liquid Feed for Pigs and Its Impact on the Porcine Gut Microbiome. Animals (Basel) 2021; 11:ani11102983. [PMID: 34680002 PMCID: PMC8532943 DOI: 10.3390/ani11102983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Liquid feed is produced by mixing dry feed ingredients with water, and sometimes liquid co-products from the food and beverage industry, at a defined ratio. Liquid feeding of pigs is popular, particularly in parts of northern and western Europe, and can be associated with lower feed costs, improved dry matter intake, growth rate and gut health, compared to dry feeding. However, spontaneous/uncontrolled fermentation upon mixing of feed with water or co-products can decrease the microbial and nutritional quality of the feed, resulting in poorer pig health and growth. For this reason, strategies aimed at optimising liquid feed microbial quality are frequently employed. These include: deliberate fermentation with/without the use of lactic acid bacteria starter cultures that produce lactic acid and lower the feed pH, thereby preventing growth of pathogens. Fermenting only the cereal component of the diet is preferred to whole diet fermentation to minimise loss of free amino acids from the diet during fermentation. This review examines the microbiome of liquid feed and explores how optimisation strategies impact both feed microbial quality and the gut microbiota and growth of liquid-fed pigs. It also covers cleaning and disinfection of liquid feeding systems and how this might impact liquid feed microbial quality. Abstract There is evidence that spontaneous fermentation frequently occurs in liquid pig feed that is intended to be delivered as fresh liquid feed, often with a resultant deterioration in the microbial and nutritional quality of the feed, which can negatively affect pig health and growth. Strategies including controlled fermentation with microbial inoculants, pre-fermentation or soaking of the cereal fraction of the diet, enzyme supplementation and dietary acidification have been employed to inhibit pathogens and prevent deterioration of feed nutritional quality, with promising results obtained in many cases. This review evaluates the impact of these strategies on the microbial quality of liquid feed and discusses how they can be further improved. It also investigates if/how these strategies impact the pig gut microbiota and growth performance of liquid-fed pigs. Finally, we review liquid feed system sanitisation practices, which are highly variable from farm to farm and discuss the impact of these practices and whether they are beneficial or detrimental to liquid feed microbial quality. Overall, we provide a comprehensive review of the current state of knowledge on liquid feed for pigs, focusing on factors affecting microbial quality and strategies for its optimisation, as well as its impact on the pig gut microbiome.
Collapse
Affiliation(s)
- James T. Cullen
- Department of Science, Waterford Institute of Technology, Co. Waterford, X91 K0EK Waterford, Ireland;
| | - Peadar G. Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Cork, Ireland;
| | - Paul Cormican
- Teagasc, Animal Bioscience Research Centre, Grange, Dunsany, Co. Meath, C15 PW93 Dublin, Ireland;
| | - Gillian E. Gardiner
- Department of Science, Waterford Institute of Technology, Co. Waterford, X91 K0EK Waterford, Ireland;
- Correspondence:
| |
Collapse
|
4
|
Fermented Diet Liquid Feeding Improves Growth Performance and Intestinal Function of Pigs. Animals (Basel) 2021; 11:ani11051452. [PMID: 34069334 PMCID: PMC8158733 DOI: 10.3390/ani11051452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The present study indicated that fermented liquid feeding improved the growth performance of pigs, which might be associated with gastrointestinal hormone and intestinal functions. These results provided a new perspective for improving the growth performance of pigs. Abstract Accumulating evidences demonstrate that fermented feed and liquid feeding exerted a great beneficial influence on growth performance and health in the pig industry. This experiment was conducted to evaluate the effects of fermented liquid feeding on the growth performance and intestinal function of pigs. Two hundred and eighty-eight 27-day-old weaned piglets (8.21 ± 0.27 kg) were randomly allocated to a control group (basal diet (CON)), an antibiotic group (basal diet supplemented with antibiotics (AB)) and a fermented liquid feeding group (basal diet with fermented liquid feeding (FLF)), with 6 replicates per treatment and 16 weaned piglets per replicate. The experiment lasted for 160 days. Fresh fecal samples were collected to evaluate the apparent total tract digestibility (ATTD) of nutrients from the last 4 days of each stage. The results are shown as follows: (1) Compared with the CON group, in the whole stage, the FLF diet significantly increased the final body weight (BW) and ADG of pigs (P < 0.05), and had a tendency to increase ADFI (P = 0.086), but had no effect on F/G. (2) The ATTD of dry matter (DM), crude protein (CP), ether extract (EE), crude ash (CA), crude fiber (CF), gross energy (GE), calcium (Ca) and total phosphorus (TP) in the FLF group was significantly elevated compared with those of the CON group at 8–20 kg stage (P < 0.05). Meanwhile, the ATTD of EE in the FLF group was significantly increased compared with that of the CON group at the 50–75 kg and 100–125 kg stages (P < 0.05), and the ATTD of Ca was higher than that of CON group at the 100–125 kg stage (P < 0.05). (3) Compared with that of the CON group, the level of serum leptin in the FLF group had a tendency to decrease (P = 0.054), the level of serum ghrelin in the FLF group was significantly elevated (P < 0.05) and the level of serum peptide YY in the FLF group was significantly decreased (P < 0.05). (4) The abundance of Lactobacillus in cecal and colonic digesta was observably enhanced in FLF group. Meanwhile, the abundance of Escherichia coli in cecal and colonic digesta were dramatically reduced in the FLF group compared with that in the CON and AB groups (P < 0.05). (5) The levels of acetic acid in colonic digesta were significantly increased in the FLF group (P < 0.05), and an increasing trend was observed in total VFA in colonic digesta compared with CON (P < 0.1). The levels of acetic acid in colonic digesta were significantly promoted in the FLF group compared with that of the AB group (P < 0.05). In conclusion, these results indicate that fermented liquid feeding improved the growth performance of pigs, which might be associated with gastrointestinal hormone and intestinal functions.
Collapse
|
5
|
O'Meara FM, Gardiner GE, Clarke D, Cummins W, O'Doherty JV, Lawlor PG. Microbiological assessment of liquid feed for finisher pigs on commercial pig units. J Appl Microbiol 2020; 130:356-369. [PMID: 32681565 DOI: 10.1111/jam.14785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/26/2022]
Abstract
AIMS To investigate the microbiological and nutritional quality of liquid finisher pig feed on commercial production units and the factors influencing this. METHODS AND RESULTS Microbiological and physio-chemical analyses were performed on liquid feed sampled from the mixing tank and troughs of the finisher section of eight commercial pig units. Lactic acid bacteria, yeast and Escherichia coli counts, as well as lactic acid, ethanol and acetate concentrations were higher in residual feed sampled from the troughs compared with mixing tank samples (P < 0·001). Feed pH, as well as lysine, methionine and threonine concentrations and gross energy were all lower in the residual trough samples (P < 0·001). Liquid co-products reduced E. coli counts in the residual trough samples (P < 0·05), pH in the mixing tank (P < 0·01) and fresh trough samples (P < 0·05) and mould counts at all three sampling locations (P < 0·01) but sanitation practices had no impact. CONCLUSIONS Even when considered unfermented, a considerable degree of spontaneous fermentation occurs in liquid feed, with resultant negative effects on nutritional quality. SIGNIFICANCE AND IMPACT OF THE STUDY This is one of the first studies showing that uncontrolled fermentation of fresh liquid pig feed is commonplace on commercial units, highlighting the need for implementation of suitable control strategies.
Collapse
Affiliation(s)
- F M O'Meara
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland.,Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - G E Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - D Clarke
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| | - W Cummins
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - J V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - P G Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|