1
|
Abeyta MA, Horst EA, Goetz BM, Mayorga EJ, Rodriguez-Jimenez S, Caratzu M, Baumgard LH. Effects of hindgut acidosis on production, metabolism, and inflammatory biomarkers in previously immune-activated lactating dairy cows. J Dairy Sci 2023; 106:4324-4335. [PMID: 37080781 DOI: 10.3168/jds.2022-22696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/08/2023] [Indexed: 04/22/2023]
Abstract
Previous stressors and systemic inflammation may increase the intestine's susceptibility to hindgut acidosis (HGA). Therefore, our experimental objectives were to evaluate the effects of isolated HGA on metabolism, production, and inflammation in simultaneously immune-activated lactating cows. Twelve rumen-cannulated Holstein cows (118 ± 41 d in milk; 1.7 ± 0.8 parity) were enrolled in a study with 3 experimental periods (P). Baseline data were collected during P1 (5 d). On d 1 of P2 (2 d), all cows received an i.v. lipopolysaccharide (LPS) bolus (0.2 µg/kg of body weight; BW). During P3 (4 d), cows were randomly assigned to 1 of 2 abomasal infusion treatments: (1) control (LPS-CON; 6 L of H2O/d; n = 6) or (2) starch infused (LPS-ST; 4 kg of corn starch + 6 L of H2O/d; n = 6). Treatments were allocated into 4 equal doses (1.5 L of H2O or 1 kg of starch and 1.5 L of H2O, respectively) and administered at 0000, 0600, 1200, and 1800 h daily. Additionally, both treatments received i.v. LPS on d 1 and 3 of P3 (0.8 and 1.6 µg/kg of BW, respectively) to maintain an inflamed state. Effects of treatment, time, and their interaction were assessed. Repeated LPS administration initiated and maintained an immune-activated state, as indicated by increased circulating white blood cells (WBC), serum amyloid A (SAA), and LPS-binding protein (LBP) during P2 and P3 (29%, 3-fold, and 50% relative to P1, respectively) for both abomasal infusion treatments. Regardless of abomasal treatment, milk yield and dry matter intake were decreased throughout P2 and P3 but with lesser severity following each LPS challenge (54, 44, and 37%, and 49, 42, and 40% relative to baseline on d 1 of P2, d 1 and d 3 of P3, respectively). As expected, starch infusions markedly decreased fecal pH (5.56 at nadir vs. 6.57 during P1) and increased P3 fecal starch relative to LPS-CON (23.7 vs. 2.4% of dry matter). Neither LPS nor starch infusions altered circulating glucose, insulin, nonesterified fatty acids, or β-hydroxybutyrate, although LPS-ST cows had decreased blood urea nitrogen throughout P3 (16% relative to LPS-CON). Despite the striking reduction in fecal pH, HGA had no additional effect on circulating WBC, SAA, or LBP. Thus, in previously immune-activated dairy cows, HGA did not augment the inflammatory state, as indicated by a lack of perturbations in production, metabolism, and inflammatory biomarkers.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - M Caratzu
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
2
|
Abeyta MA, Goetz BM, Mayorga EJ, Rodriguez-Jimenez S, Opgenorth J, Freestone AD, Lourenco JM, Callaway TR, Baumgard LH. Effects of abomasally infused rumen fluid from corn-challenged donor cows on production, metabolism, and inflammatory biomarkers in healthy recipient cows. J Dairy Sci 2023; 106:4336-4352. [PMID: 37028958 DOI: 10.3168/jds.2022-22809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 04/08/2023]
Abstract
Subacute rumen acidosis may cause postruminal intestinal barrier dysfunction, but this does not appear to be due to increased hindgut fermentation. Alternatively, intestinal hyperpermeability may be explained by the plethora of potentially harmful substances (e.g., ethanol, endotoxin, and amines) produced in the rumen during subacute rumen acidosis, which are difficult to isolate in traditional in vivo experiments. Therefore, objectives were to evaluate whether abomasal infusion of acidotic rumen fluid collected from donor (Donor) cows elicits systemic inflammation or alters metabolism or production in healthy recipients. Ten rumen-cannulated lactating dairy cows [249 ± 63 d in milk; 753 ± 32 kg of body weight (BW)] were randomly assigned to 1 of 2 abomasal infusion treatments: (1) healthy rumen fluid (HF; 5 L/h; n = 5) or (2) acidotic rumen fluid (AF; 5 L/h; n = 5) infused. Eight rumen-cannulated cows [4 dry, 4 lactating (lactating = 391 ± 220 d in milk); 760 ± 70 kg of BW] were used as Donor cows. All 18 cows were acclimated to a high-fiber diet (46% neutral detergent fiber; 14% starch) during an 11-d prefeeding period during which rumen fluid was collected for the eventual infusion into HF cows. During period (P) 1 (5 d), baseline data were obtained and on d 5 Donor were corn-challenged (2.75% BW ground corn after 16 h of 75% feed restriction). Cows were fasted until 36 h relative to rumen acidosis induction (RAI), and data were collected through 96 h RAI. At 12 h RAI, an additional 0.50% BW of ground corn was added, and acidotic fluid collections began (7 L/Donor every 2 h; 6 M HCl was added to collected fluid until pH was between 5.0 and 5.2). On d 1 of P2 (4 d), HF/AF cows were abomasally infused with their respective treatments for 16 h, and data were collected for 96 h relative to the first infusion. Data were analyzed in SAS (SAS Institute Inc.) using PROC MIXED. Following the corn challenge in the Donor cows, rumen pH only mildly decreased at nadir (pH = 5.64 at 8 h RAI) and remained above the desired threshold for both acute (5.2) and subacute (5.6) acidosis. In contrast, fecal and blood pH markedly decreased to acidotic levels (nadir = 4.65 and 7.28 at 36 and 30 h RAI, respectively), and fecal pH remained below 5 from 22 to 36 h RAI. In Donor cows, dry matter intake remained decreased through d 4 (36% relative to baseline) and serum amyloid A and lipopolysaccharide-binding protein markedly increased by 48 h RAI in Donor cows (30- and 3-fold, respectively). In cows that received the abomasal infusions, fecal pH decreased in AF from 6 to 12 h relative to the first infusion (7.07 vs. 6.33) compared with HF; however, milk yield, dry matter intake, energy-corrected milk, rectal temperature, serum amyloid A, and lipopolysaccharide-binding protein were unaffected. Overall, the corn challenge did not cause subacute rumen acidosis but markedly decreased fecal and blood pH and stimulated a delayed inflammatory response in the Donor cows. Abomasal infusion of rumen fluid from corn-challenged Donor cows decreased fecal pH but did not cause inflammation, nor did it create an immune-activated phenotype in recipient cows.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - J Opgenorth
- Department of Animal Science, Iowa State University, Ames 50011
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames 50011
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
3
|
Abeyta MA, Horst EA, Goetz BM, Rodriguez-Jimenez S, Mayorga EJ, Al-Qaisi M, Baumgard LH. Effects of hindgut acidosis on inflammation, metabolism, and productivity in lactating dairy cows fed a high-fiber diet. J Dairy Sci 2023; 106:2879-2889. [PMID: 36823004 DOI: 10.3168/jds.2022-22680] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/04/2022] [Indexed: 02/23/2023]
Abstract
Hindgut acidosis (HGA) may cause or contribute to the inflammatory state of transition dairy cows by compromising the intestinal barrier. Previous experiments isolating the effects of HGA on inflammatory metrics have generated inconsistent results, which may be explained by acclimation to low- versus high-starch diets. Thus, study objectives were to evaluate the effects of HGA in cows acclimated to a high-fiber diet. Ten rumen-cannulated Holstein cows (38 ± 5 kg/d milk yield; 243 ± 62 d in milk; 1.6 ± 1.1 parity; 663 ± 57 kg of body weight) were enrolled in a study with 2 experimental periods (P). Before P1, all cows were acclimated to a high-fiber, low-starch diet (50% neutral detergent fiber, 15% starch) for 17 d. During P1 (4 d), baseline data were collected for use as covariates. During P2 (7 d), cows were assigned to 1 of 2 abomasal infusion treatments: (1) control (CON; 1.5 L of H2O/infusion; n = 4) or (2) starch infused (ST; 1 kg of corn starch + 1.5 L of H2O/infusion; n = 6). All cows were infused with their respective treatments every 6 h daily at 0000, 0600, 1200, and 1800 h, such that ST cows received a total of 4 kg of corn starch/d. Starch infusions successfully induced HGA, as indicated by a marked decrease in fecal pH (1.2 units) relative to CON. However, in contrast to our assumptions, infusing starch had no deleterious effects on milk yield, energy-corrected milk, or voluntary dry matter intake during P2. Milk protein, lactose, their yields, fat yield, and somatic cell score remained unaffected by starch infusions, whereas milk fat content and urea nitrogen were decreased in ST relative to CON (8 and 17%, respectively). Overall, circulating glucose and β-hydroxybutyrate concentrations remained similar between treatments, but starch infusions decreased nonesterified fatty acids on d 3 relative to CON. Blood urea nitrogen decreased throughout P2 in ST (38%) relative to CON. In contrast to our hypothesis, HGA did not alter circulating serum amyloid A or lipopolysaccharide binding protein, nor did it affect rectal temperature. In summary, HGA moderately altered metabolism but did not affect production or elicit an inflammatory response in lactating dairy cows previously acclimated to a high-fiber diet.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
4
|
Abeyta MA, Horst EA, Goetz BM, Mayorga EJ, Rodriguez-Jimenez S, Caratzu M, Baumgard LH. Effects of hindgut acidosis on production, metabolism, and inflammatory biomarkers in feed-restricted lactating dairy cows. J Dairy Sci 2023; 106:2890-2903. [PMID: 36823007 DOI: 10.3168/jds.2022-22689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 02/25/2023]
Abstract
Study objectives were to evaluate the effects of hindgut acidosis (HGA) on production, metabolism, and inflammation in feed-restricted (FR) dairy cows. Twelve rumen-cannulated cows were enrolled in a study with 3 experimental periods (P). During P1 (5 d), baseline data were collected. During P2 (2 d), all cows were FR to 40% of their baseline feed intake. During P3 (4 d), cows remained FR and were assigned to 1 of 2 abomasal infusion treatments: (1) control (FR-CON; 6 L of H2O/d; n = 6) or (2) starch (FR-ST; 4 kg of corn starch + 6 L of H2O/d; n = 6). Respective treatments were partitioned into 4 equal doses (1 kg of corn starch/infusion) and were abomasally infused daily at 0000, 0600, 1200, and 1800 h. All 3 P were analyzed independently and the effects of treatment, time, and treatment × time were assessed using PROC MIXED, and P1 and P2 data were analyzed using the treatments cows were destined to be assigned to during P3. Hallmark production and metabolic responses to feed restriction were observed in both treatments, including decreased milk yield (39%) and energy-corrected milk (32%), circulating glucose (12%), insulin (71%), and increased circulating nonesterified fatty acids (3.2-fold) throughout both P2 and P3, relative to P1. However, despite a marked reduction in fecal pH (0.96 units), the aforementioned metrics were unaltered by HGA. During P3, starch infusions increased circulating β-hydroxybutyrate, with the most pronounced increase occurring on d 2 (81% relative to FR-CON). Further, feed restriction decreased blood urea nitrogen during P2 (17% relative to P1) in both treatments, and this was exacerbated by starch infusions during P3 (31% decrease relative to FR-CON). In contrast to our hypothesis, neither feed restriction nor HGA increased circulating acute-phase proteins (serum amyloid A and lipopolysaccharide binding protein) relative to P1 or FR-CON, respectively. Thus, despite marked reductions in fecal pH, prior feed restriction did not appear to increase the susceptibility to HGA.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - M Caratzu
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
5
|
Abeyta MA, Horst EA, Mayorga EJ, Goetz BM, Al-Qaisi M, McCarthy CS, O'Neil MR, Dooley BC, Piantoni P, Schroeder GF, Baumgard LH. Effects of hindgut acidosis on metabolism, inflammation, and production in dairy cows consuming a standard lactation diet. J Dairy Sci 2023; 106:1429-1440. [PMID: 36460494 DOI: 10.3168/jds.2022-22303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
Postruminal intestinal barrier dysfunction caused by excessive hindgut fermentation may be a source of peripheral inflammation in dairy cattle. Therefore, the study objectives were to evaluate the effects of isolated hindgut acidosis on metabolism, inflammation, and production in lactating dairy cows. Five rumen-cannulated lactating Holstein cows (32.6 ± 7.2 kg/d of milk yield, 242 ± 108 d in milk; 642 ± 99 kg of body weight; 1.8 ± 1.0 parity) were enrolled in a study with 2 experimental periods (P). During P1 (4 d), cows were fed ad libitum a standard lactating cow diet (26% starch dry matter) and baseline data were collected. During P2 (7 d), all cows were fed the same diet ad libitum and abomasally infused with 4 kg/d of pure corn starch (1 kg of corn starch + 1.25 L of H2O/infusion at 0600, 1200, 1800, and 0000 h). Effects of time (hour relative to the first infusion or day) relative to P1 were evaluated using PROC MIXED in SAS (version 9.4; SAS Institute Inc.). Infusing starch markedly reduced fecal pH (5.84 vs. 6.76) and increased fecal starch (2.2 to 9.6% of dry matter) relative to baseline. During P2, milk yield, milk components, energy-corrected milk yield, and voluntary dry matter intake remained unchanged. At 14 h, plasma insulin and β-hydroxybutyrate increased (2.4-fold and 53%, respectively), whereas circulating glucose concentrations remained unaltered. Furthermore, blood urea nitrogen increased at 2 h (23%) before promptly decreasing below baseline at 14 h (13%). Nonesterified fatty acids tended to decrease from 2 to 26 h (40%). Circulating white blood cells and neutrophils increased on d 4 (36 and 73%, respectively) and somatic cell count increased on d 5 (4.8-fold). However, circulating serum amyloid A and lipopolysaccharide-binding protein concentrations were unaffected by starch infusions. Despite minor changes in postabsorptive energetics and leukocyte dynamics, abomasal starch infusions and the subsequent hindgut acidosis had little or no meaningful effects on biomarkers of immune activation or production variables.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - C S McCarthy
- Department of Animal Science, Iowa State University, Ames 50011
| | - M R O'Neil
- Department of Animal Science, Iowa State University, Ames 50011
| | - B C Dooley
- Department of Animal Science, Iowa State University, Ames 50011
| | - P Piantoni
- Cargill Animal Nutrition Innovation Center, Elk River, MN 55330
| | - G F Schroeder
- Cargill Animal Nutrition Innovation Center, Elk River, MN 55330
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
6
|
Morphological Assessment and Biomarkers of Low-Grade, Chronic Intestinal Inflammation in Production Animals. Animals (Basel) 2022; 12:ani12213036. [PMID: 36359160 PMCID: PMC9654368 DOI: 10.3390/ani12213036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Production animals are continuously exposed to environmental and dietary factors that might induce a state of low-grade, chronic intestinal inflammation. This condition compromises the productive performance and well-fare of these animals, requiring studies to understand what causes it and to develop control strategies. An intestinal inflammatory process is generally associated with alterations in the structure and functionality of its wall, resulting in the release of cellular components into the blood and/or feces. These components can act as biomarkers, i.e., they are measured to identify and quantify an inflammatory process without requiring invasive methods. In this review we discuss the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the identification of biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies. Abstract The complex interaction between the intestinal mucosa, the gut microbiota, and the diet balances the host physiological homeostasis and is fundamental for the maximal genetic potential of production animals. However, factors such as chemical and physical characteristics of the diet and/or environmental stressors can continuously affect this balance, potentially inducing a state of chronic low-grade inflammation in the gut, where inflammatory parameters are present and demanding energy, but not in enough intensity to provoke clinical manifestations. It’s vital to expand the understanding of inflammation dynamics and of how they compromise the function activity and microscopic morphology of the intestinal mucosa. These morphometric alterations are associated with the release of structural and functional cellular components into the feces and the blood stream creating measurable biomarkers to track this condition. Moreover, the identification of novel, immunometabolic biomarkers can provide dynamic and predictors of low-grade chronic inflammation, but also provide indicators of successful nutritional or feed additive intervention strategies. The objective of this paper is to review the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies.
Collapse
|