1
|
Roskam E, Kenny DA, Kelly AK, O'Flaherty V, Waters SM. Dietary supplementation with calcium peroxide improves methane mitigation potential of finishing beef cattle. Animal 2024; 18:101340. [PMID: 39423677 DOI: 10.1016/j.animal.2024.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024] Open
Abstract
Calcium peroxide (CaO2) offers potential as an anti-methanogenic dietary feed material. The compound has been previously assessed in vitro, with methane (CH4) reductions of > 50% observed. The objective of this study was to assess dietary supplementation of CaO2 at different inclusion levels and physical formats in a finishing beef system on the effects of animal performance, gaseous emissions, rumen fermentation parameters and digestibility. Seventy-two dairy-beef bulls (465 kg; 16 months of age) were randomly allocated to one of four treatments supplemented with CaO2; in a coarse ration (1) CON (0% CaO2), (2) LO (1.35% CaO2), (3) HI (2.25% CaO2), and in a pellet (4) HP (2.25% CaO2) (n = 18). Animals received their respective treatments for a 77 d finishing period, during which DM intake (American Calan Inc., Northwood, NH), average daily gain (ADG), feed efficiency and enteric emissions (GreenFeed emissions monitoring system; C-Lock Inc., Rapid City, SD) were measured. The finishing diet was isonitrogenous and isoenergetic across the four treatment groups, composed of 60:40 grass silage:concentrate. Silage was offered each morning (0900 h), and concentrates were offered twice daily (0800 and 1500 h). Supplementation of CaO2 had no effect on final weight (P = 0.09), ADG (P = 0.22) or feed efficiency (P = 0.13). Regarding DM intake, the HI treatment group consumed in the order of 1 kg less than CON (P < 0.01), while HP did not affect DM intake compared to CON (P = 0.79). Across treatments, DM intake ranged from 8.43 to 9.57 kg/d, equating to 1.6-1.8% of BW. Daily CH4 values for the control were 240 g/d, while CaO2 supplemented diets ranged from 202 to 170 g/d, resulting in daily CH4 reductions of 16, 29 and 27% for LO, HI and HP, respectively, compared to CON (P < 0.0001). Additionally, hydrogen was reduced in CaO2 supplemented animals by 32-36% relative to CON (P < 0.0001), with a simultaneous reduction in volatile fatty acid production (P < 0.01) and an increase in propionate concentration (P < 0.0001). Across all universally accepted CH4 metrics (yield, intensity, production), the dietary inclusion of CaO2 whether at a low or high rate, or indeed, through a coarse ration or pelleted format reduced CH4 in the order of 16-32%. This study also concluded that CaO2 can successfully endure the pelleting process, therefore, improving ease of delivery if implemented at farm level.
Collapse
Affiliation(s)
- E Roskam
- Animal and Bioscience Research Department, Teagasc Grange, Co. Meath C15PW93, Ireland; School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Co. Galway H91TK33, Ireland
| | - D A Kenny
- Animal and Bioscience Research Department, Teagasc Grange, Co. Meath C15PW93, Ireland; School of Agriculture and Food Science, University College Dublin, Co. Dublin D04V1W8, Ireland
| | - A K Kelly
- School of Agriculture and Food Science, University College Dublin, Co. Dublin D04V1W8, Ireland
| | - V O'Flaherty
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Co. Galway H91TK33, Ireland; GlasPort Bio Ltd, Unit 204, Business Innovation Centre, University of Galway, Co. Galway H91TK33, Ireland
| | - S M Waters
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Co. Galway H91TK33, Ireland.
| |
Collapse
|
2
|
Clariget JM, Banchero G, Ciganda V, Santander D, Keogh K, Smith PE, Kelly AK, Kenny DA. Methane emissions and rumen microbiome response during compensatory growth on either a forage or grain-based finishing diet in beef cattle. Transl Anim Sci 2024; 8:txae143. [PMID: 39444712 PMCID: PMC11497622 DOI: 10.1093/tas/txae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
The aim of this experiment was to evaluate the effect of the level of prior nutritional restriction during backgrounding in Angus steers on methane (CH4) emissions, diet digestibility, rumen fermentation, and ruminal microbiome under either a forage or grain-based finishing diet. Eighty steers (body weight [BW]: 444 ± 39 kg, age: 18 ± 1 mo) were blocked and randomly assigned within the block to either an optimal (0.6 to 0.7 kg/d) or suboptimal (0.3 to 0.4 kg/d) growth rate to exploit compensatory growth (CG), during 97 d of backgrounding. Following, for 84 d, half of the steers in each group were finished on a forage diet while the other half were finished on a grain-based diet. During the backgrounding period, CH4 emissions tended (P ≤ 0.07) to be higher; however, CH4 intensity expressed by BW gain was 50% lower (P < 0.01) for optimal compared to suboptimal growth steers. BW gain, dry matter intake, diet digestibility, and ammonia nitrogen in the rumen were greater (P < 0.01) for optimal compared to suboptimal steers. During the finishing period, CH4 emissions in either forage or grain finishing diets were similar (P > 0.05) for both backgrounding treatments. However, due to greater BW gain in suboptimal steers (1.20 vs. 0.97 kg/d), their CH4 intensity-related coefficient decreased (P < 0.05) during the finishing period. Diet digestibility or any fermentation parameter was unaffected (P > 0.05) by previous backgrounding during the finishing period. In fact, rumen microbial abundance measured during finishing was not modified (P > 0.05) by previous backgrounding. Steers finished under grain conditions, had lower (P < 0.01) daily CH4 emissions and CH4 intensity. Additionally, grain-fed steers increased (P < 0.05) BW gain, diet digestibility, propionic, lactic, and valeric acids, Succinivibrionaceae family and Succiniclasticum, Erysipelotrichaceae UCG-002, Sharpea, and Megasphaera bacteria genera, compared to forage-fed steers. In conclusion, ruminal microbiome and fermentation, diet digestibility, and CH4 emissions were unaffected during finishing between prior levels of backgrounding growth. However, given the higher BW gain in suboptimal steers in both finishing diets, CH4 intensity was reduced in comparison to the optimal backgrounded steers. Nevertheless, lifetime emissions of the steers need to be assessed with the different dietary regimens, since suboptimal steers reduced CH4 emissions during the backgrounding period but, additional days of finishing were required to achieve the same BW as their contemporaries.
Collapse
Affiliation(s)
- Juan M Clariget
- Instituto Nacional de Investigación Agropecuaria, Colonia, Uruguay
- Teagasc Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | | | - Verónica Ciganda
- Instituto Nacional de Investigación Agropecuaria, Colonia, Uruguay
| | - Daniel Santander
- Instituto Nacional de Investigación Agropecuaria, Colonia, Uruguay
| | - Kate Keogh
- Teagasc Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| | - Paul E Smith
- Teagasc Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - David A Kenny
- Teagasc Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| |
Collapse
|
3
|
Male Here RR, McAloon C, Donlon J, McGee M, Duane M, Kenny D, Earley B. Summer scour syndrome in weaned dairy calves: case series. Ir Vet J 2024; 77:14. [PMID: 39014467 PMCID: PMC11251238 DOI: 10.1186/s13620-024-00273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Summer scour syndrome (SSS) is a recently identified pathological condition affecting weaned dairy and dairy-beef calves during their first grazing season in Ireland. The syndrome is characterised by diarrhoea, weight loss, weakness, and can ultimately lead to death in some calves. Oral and oesophageal ulcerations are present in some cases. This study aimed to characterise a series of SSS cases in weaned dairy-bred calves on Irish commercial farms. RESULTS Five farms with calves having unexplained diarrhoea at grass were referred by private veterinary practitioners (PVP) following preliminary testing to exclude coccidiosis and parasitic gastroenteritis. Farms were visited within 2 to 5 days following PVP's referrals, or 2 days to 3 weeks relative to the onset of clinical signs. Farm management data, grass and concentrate samples, and biological samples from 46 calves (8 to 10 calves/farm) displaying clinical signs were collected. Two farms were subsequently found positive for coccidiosis and/or had chronic pneumonia problems after a thorough herd investigation and were designated as non-case farms (NCF). The remaining three farms were deemed typical SSS outbreaks (case farms; CF). Mean rumen fluid pH per farm ranged from 6.67 to 7.09 on CF, and 6.43-6.88 on NCF. Mean rumen fluid ammonia concentrations ranged from 17.6 to 29.6 mg/L and 17.2-45.0 mg/L on CF and NCF, respectively. Corresponding blood ammonia concentrations ranged from 129 to 223 µmol/L and 22-25 µmol/L. Mean blood copper and molybdenum concentrations were within normal range on all farms. Grass crude protein concentrations on the paddocks where the calves had grazed, and were currently grazing on the day of visit ranged from 137 to 148 g/kg DM and 106-177 g/kg DM, respectively on CF, and 160-200 g/kg DM and 151-186 g/kg DM, respectively on NCF. On CF, inorganic nitrogen fertiliser was applied 1 to 3 weeks pre-grazing, whereas on the two NCF, inorganic nitrogen fertiliser was applied 2 to 3 weeks pre-grazing on one farm and no fertiliser was applied on the other. CONCLUSION These findings suggest that copper or molybdenum toxicity, and ruminal acidosis are not the primary causes of SSS. High blood ammonia concentrations and the timing and level of inorganic nitrogen fertiliser application to paddocks pre-grazing, warrant further investigation.
Collapse
Affiliation(s)
- Rischi Robinson Male Here
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, C15 PW93, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Donlon
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Mark McGee
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Mary Duane
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - David Kenny
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Bernadette Earley
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, C15 PW93, Ireland.
| |
Collapse
|
4
|
Vesga DA, Torres RNS, Moreira JBS, Granja-Salcedo YT, Neto ORM, Chardulo LAL, Nair MN, Carvalho PHV, Baldassini WA. Performance, nutrient utilization and meat quality traits in Bos indicus cattle: a meta-analysis examining the effect of residual feed intake. Trop Anim Health Prod 2024; 56:214. [PMID: 39004692 DOI: 10.1007/s11250-024-04072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
This meta-analysis aims to investigate the effects of residual feed intake (RFI) phenotype on performance, nutrient utilization and meat quality traits in Zebu (Bos indicus) cattle. Twenty-three peer-reviewed publications with 37 treatment means were included in the dataset. Weighted mean difference analysis compared animals categorized into low RFI (more efficient) versus medium or high RFI (less efficient) groups. Data heterogeneity via meta-regression and subgroup analysis, considering variables such as animal age, sex class, experimental duration, RFI group, dietary concentrate, and estimated metabolizable energy intake were also explored. The predominant genetic group of cattle in the dataset was Nellore (89.18%), followed by Brahman (10.81%). More efficient animals (low RFI phenotype) exhibited less dry matter intake (DMI; P < 0.010) than medium or high RFI animals (-0.95 kg vs. -0.42 kg/d). Cattle dietary crude protein and fiber digestibility were consistent across RFI groups (P > 0.05), while dietary ether extract digestibility tended to decrease (P = 0.050) in low RFI animals (-13.20 g/kg DM). Low RFI animals tended to increased (P = 0.065) ribeye area (REA) compared to the high/medium RFI groups, while carcass backfat thickness (BFT) decreased (P = 0.042) compared to high/medium RFI groups. Moreover, there was an increase (P < 0.001) of 0.22 kg in Warner-Bratzler shear force (WBSF) and a reduction (P < 0.001) in the myofibrillar fragmentation index (MFI) in low RFI animals. Meat color parameters (lightness [L*] and yellowness [b*]) and visual marbling scores were consistent (P > 0.05) across RFI groups. In conclusion, Zebu cattle classified as efficient (low RFI) exhibited reduced DMI, which improves their feed efficiency. However, BFT and meat quality parameters such as tenderness (WBSF and MFI) and redness [a*] were compromised by low RFI phenotype, highlighting the challenge of enhancing feed efficiency and meat quality traits in Zebu cattle.
Collapse
Affiliation(s)
- Daniela A Vesga
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Rodrigo N S Torres
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - José B S Moreira
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Yury T Granja-Salcedo
- El Nus Research Center, Colombian Agricultural Research Corporation, San Roque, Antioquia, Colombia
| | - Otavio R Machado Neto
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Luis Artur L Chardulo
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Pedro H V Carvalho
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Welder A Baldassini
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil.
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
5
|
Scully S, Earley B, Smith PE, McAloon C, Waters SM. Health-associated changes of the fecal microbiota in dairy heifer calves during the pre-weaning period. Front Microbiol 2024; 15:1359611. [PMID: 38737409 PMCID: PMC11082272 DOI: 10.3389/fmicb.2024.1359611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Neonatal calf diarrhea is a multifactorial condition that occurs in early life when calves are particularly susceptible to enteric infection and dysbiosis of the gut microbiome. Good calf health is dependent on successful passive transfer of immunity from the dam through colostrum. There are limited studies on the developing gut microbiota from birth to weaning in calves. Methodology Therefore, the objective of this study was to examine the effect of immune status and diarrheal incidence on the development of the fecal microbiota in Jersey (n = 22) and Holstein (n = 29) heifer calves throughout the pre-weaning period. Calves were hand-fed a colostrum volume equivalent to 8.5% of their birthweight, from either the calf's dam (n = 28) or re-heated mixed colostrum (≤2 cows, ≤1d; n = 23) within 2 h of birth. All calves were clinically assessed using a modified Wisconsin-Madison calf health scoring system and rectal temperature at day (d) 0, d7, d21, or disease manifestation (DM) and weaning (d83). Weights were recorded at d0, d21, and d83. Calf blood samples were collected at d7 for the determination of calf serum IgG (sIgG). Fecal samples were obtained at d7, d21/DM [mean d22 (SE 0.70)], and at weaning for 16S rRNA amplicon sequencing of the fecal microbiota. Data were processed in R using DADA2; taxonomy was assigned using the SILVA database and further analyzed using Phyloseq and MaAsLin 2. Results and discussion Significant amplicon sequence variants (ASVs) and calf performance data underwent a Spearman rank-order correlation test. There was no effect (p > 0.05) of colostrum source or calf breed on serum total protein. An effect of calf breed (p < 0.05) was observed on sIgG concentrations such that Holstein calves had 6.49 (SE 2.99) mg/ml higher sIgG than Jersey calves. Colostrum source and calf breed had no effect (p > 0.05) on health status or the alpha diversity of the fecal microbiota. There was a relationship between health status and time interaction (p < 0.001), whereby alpha diversity increased with time; however, diarrheic calves had reduced microbial diversity at DM. No difference (p > 0.05) in beta diversity of the microbiota was detected at d7 or d83. At the genus level, 33 ASVs were associated (adj.p < 0.05) with health status over the pre-weaning period.
Collapse
Affiliation(s)
- Sabine Scully
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Meath, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Bernadette Earley
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Meath, Ireland
| | - Paul E. Smith
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Meath, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Sinéad M. Waters
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Souza LL, Dominguez-Castaño P, Gianvecchio SB, Sakamoto LS, Rodrigues GRD, Soares TLDS, Bonilha SFM, Marcatto JDOS, Galvão Albuquerque L, Vasconcelos Silva JAII, Zerlotti Mercadante ME. Heritability estimates and genome-wide association study of methane emission traits in Nellore cattle. J Anim Sci 2024; 102:skae182. [PMID: 38967061 PMCID: PMC11282363 DOI: 10.1093/jas/skae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024] Open
Abstract
The objectives of the present study were to estimate the heritability for daily methane emission (CH4) and residual daily methane emission (CH4res) in Nellore cattle, as well as to perform genome-wide association studies (GWAS) to identify genomic regions and candidate genes influencing the genetic variation of CH4 and CH4res. Methane emission phenotypes of 743 Nellore animals belonging to 3 breeding programs were evaluated. CH4 was measured using the sulfur hexafluoride (SF6) tracer technique (which involves an SF6 permeation tube introduced into the rumen, and an appropriate apparatus on each animal), and CH4res was obtained as the difference between observed CH4 and CH4 adjusted for dry matter intake. A total of 6,252 genotyped individuals were used for genomic analyses. Data were analyzed with a univariate animal model by the single-step GBLUP method using the average information restricted maximum likelihood (AIREML) algorithm. The effects of single nucleotide polymorphisms (SNPs) were obtained using a single-step GWAS approach. Candidate genes were identified based on genomic windows associated with quantitative trait loci (QTLs) related to the 2 traits. Annotation of QTLs and identification of candidate genes were based on the initial and final coordinates of each genomic window considering the bovine genome ARS-UCD1.2 assembly. Heritability estimates were of moderate to high magnitude, being 0.42 ± 0.09 for CH4 and 0.21 ± 0.09 for CH4res, indicating that these traits will respond rapidly to genetic selection. GWAS revealed 11 and 15 SNPs that were significantly associated (P < 10-6) with genetic variation of CH4 and CH4res, respectively. QTLs associated with feed efficiency, residual feed intake, body weight, and height overlapped with significant markers for the traits evaluated. Ten candidate genes were present in the regions of significant SNPs; 3 were associated with CH4 and 7 with CH4res. The identified genes are related to different functions such as modulation of the rumen microbiota, fatty acid production, and lipid metabolism. CH4 and CH4res presented sufficient genetic variation and may respond rapidly to selection. Therefore, these traits can be included in animal breeding programs aimed at reducing enteric methane emissions across generations.
Collapse
Affiliation(s)
- Luana Lelis Souza
- Faculty of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
| | - Pablo Dominguez-Castaño
- Faculty of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
- Facultad de Ciencias Agrarias, Fundación Universitaria Agraria de Colombia-UNIAGRARIA, Bogotá 111166, Colombia
| | - Sarah Bernardes Gianvecchio
- Faculty of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
- Institute of Animal Science (IZ), Beef Cattle Research Center, 14160-970, Sertãozinho, Brazil
| | | | - Gustavo Roberto Dias Rodrigues
- Faculty of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
- Institute of Animal Science (IZ), Beef Cattle Research Center, 14160-970, Sertãozinho, Brazil
| | - Tainara Luana da Silva Soares
- Faculty of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
- Institute of Animal Science (IZ), Beef Cattle Research Center, 14160-970, Sertãozinho, Brazil
| | - Sarah Figueiredo Martins Bonilha
- Institute of Animal Science (IZ), Beef Cattle Research Center, 14160-970, Sertãozinho, Brazil
- National Council for Science and Technological Development, 71605-001, Brasilia, Brazil
| | | | - Lucia Galvão Albuquerque
- Faculty of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
- National Council for Science and Technological Development, 71605-001, Brasilia, Brazil
| | - Josineudson Augusto II Vasconcelos Silva
- Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18618-000, Botucatu, Brazil
- National Council for Science and Technological Development, 71605-001, Brasilia, Brazil
| | - Maria Eugênia Zerlotti Mercadante
- Faculty of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), 14884-900, Jaboticabal, Brazil
- Institute of Animal Science (IZ), Beef Cattle Research Center, 14160-970, Sertãozinho, Brazil
- National Council for Science and Technological Development, 71605-001, Brasilia, Brazil
| |
Collapse
|
7
|
Crowley SB, Purfield DC, Conroy SB, Kelly DN, Evans RD, Ryan CV, Berry DP. Associations between a range of enteric methane emission traits and performance traits in indoor-fed growing cattle. J Anim Sci 2024; 102:skae346. [PMID: 39514767 PMCID: PMC11641421 DOI: 10.1093/jas/skae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the multiple definitions currently used to express enteric methane emissions from ruminants, no consensus has been reached on the most appropriate definition. The objective of the present study was to explore alternative trait definitions reflecting animal-level differences in enteric methane emissions in growing cattle. It is likely that no single methane trait definition will be best suited to all intended use cases, but at least knowing the relationships between the different traits may help inform the selection process. The research aimed to understand the complex inter-relationships between traditional and novel methane traits and their association with performance traits across multiple breeds and sexes of cattle; also of interest was the extent of variability in daily enteric methane emissions independent of performance traits like feed intake, growth and liveweight. Methane and carbon dioxide data were collected using the Greenfeed system on 939 growing crossbred cattle from a commercial feedlot. Performance traits including feed intake, feeding behavior, liveweight, live animal ultrasound, subjectively scored skeletal and muscular traits, and slaughter data were also available. A total of 13 different methane traits were generated, including (average) daily methane production, 5 ratio traits and 7 residual methane (RMP) traits. The RMP traits were defined as methane production adjusted statistically for different combinations of the performance traits of energy intake, liveweight, average daily gain, and carcass weight; terms reflecting systematic effects were also included in the fixed effects linear models. Of the performance traits investigated, liveweight and energy intake individually explained more of the variability in methane production than growth rate or fat. All definitions of RMP were strongly phenotypically correlated with each other (>0.90) as well as with methane production itself (>0.86); the RMP traits were also moderately correlated with the methane ratio traits (>0.57). The dataset included heifers, steers, and bulls; bulls were either fed a total mixed ration or ad lib concentrates. When all sexes fed total mixed ration were compared, bulls, on average, emitted the most enteric methane per day of 269.53 g, while heifers and steers produced 237.54 and 253.26 g, respectively. Breed differences in the methane traits existed, with Limousins, on average, producing the least amount of methane of the breeds investigated. Herefords and Montbéliardes produced 124.50 g and 130.77 g more methane per day, respectively, than Limousins. The most efficient 10% of test-day records, as defined by daily methane independent of both energy intake and liveweight emitted, on average, 54.60 g/d less methane than animals that were average for daily methane independent of both energy intake and liveweight. This equates to 6.5 kg less methane production per animal over a 120-d finishing period for the same feed intake and liveweight.
Collapse
Affiliation(s)
- Sean B Crowley
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, County Cork, Ireland
- Department of Biological Sciences, Munster Technological University, Bishopstown, County Cork, Ireland
| | - Deirdre C Purfield
- Department of Biological Sciences, Munster Technological University, Bishopstown, County Cork, Ireland
| | - Stephen B Conroy
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County Cork, Ireland
| | - David N Kelly
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County Cork, Ireland
| | - Ross D Evans
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County Cork, Ireland
| | - Clodagh V Ryan
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County Cork, Ireland
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, County Cork, Ireland
| | - Donagh P Berry
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
8
|
Kim M, Masaki T, Oikawa K, Ashihara A, Ikuta K, Iwamoto E, Lee H, Haga S, Uemoto Y, Roh S, Terada F, Nonaka I. Effect of residual methane emission on physiological characteristics and carcass performance in Japanese Black cattle. Anim Sci J 2024; 95:e13954. [PMID: 38797605 DOI: 10.1111/asj.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
This study investigated the physiological characteristics and carcass performance associated with residual methane emissions (RME), and the effects of bull differences on CH4-related traits in Japanese Black cattle. Enteric methane (CH4) emissions from 156 Japanese Black cattle (111 heifers and 45 steers) were measured during early fattening using the sniffer method. Various physiological parameters were investigated to clarify the physiological traits between the high, middle, and low RME groups. CH4-related traits were examined to determine whether bull differences affected progeny CH4 emissions. Ruminal butyrate and NH3 concentrations were significantly higher in the high-RME group than in the low-RME group, whereas the propionate content was significantly higher in the low-RME group. Blood urea nitrogen, β-hydroxybutyric acid, and insulin concentrations were significantly higher, and blood amino acids were lower in the high-RME group than in the other groups. No significant differences were observed in the carcass traits and beef fat composition between RME groups. CH4-related traits were significantly different among bull herds. Our results show that CH4-related traits are heritable, wherein bull differences affect progeny CH4 production capability, and that the above-mentioned rumen fermentations and blood metabolites could be used to evaluate enteric methanogenesis in Japanese Black cattle.
Collapse
Affiliation(s)
- Minji Kim
- Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, Japan
| | - Kohei Oikawa
- Institute of Livestock and Grassland Science, Nasushiobara, Tochigi, Japan
| | - Akane Ashihara
- Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Kentaro Ikuta
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, Japan
| | - Huseong Lee
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Satoshi Haga
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Fuminori Terada
- Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Itoko Nonaka
- Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
da Cunha LL, Bremm C, Savian JV, Zubieta ÁS, Rossetto J, de Faccio Carvalho PC. Relevance of sward structure and forage nutrient contents in explaining methane emissions from grazing beef cattle and sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161695. [PMID: 36693572 DOI: 10.1016/j.scitotenv.2023.161695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Forage nutrient contents are an important factor explaining the dry matter intake (DMI), average daily gain (ADG), and methane emissions (CH4) of ruminants fed indoors. However, for grazing animals, the forage nutrient contents might be limited in explaining such response variables. We aimed to verify the explanatory power of forage nutrient contents and sward structure on daily intake, performance, and CH4 emissions by sheep and beef cattle grazing different grassland types in southern Brazil. We analyzed data from five grazing trials using sheep and beef cattle grazing on Italian ryegrass (Lolium multiflorum), mixed Italian ryegrass and black oat (Lolium multiflorum + Avena strigosa), pearl millet (Pennisetum americanum), and multispecies native grassland. We used mixed models, including the forage nutrient contents [crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF)], sward structure (sward height and herbage mass) and their interactions, as fixed effects and trial, season, methodologies, animal species, grassland type, and paddock, as random effects. The model for DMI (kg DM/LW0.75) had an adjusted coefficient of determination (R2adj) of 71.6 %, where 11.3, 23.1, and 37.2 % of the R2adj were explained by the forage nutrient contents, sward structure, and their interaction, respectively. The ADG (kg/LW0.75) model presented an R2adj of 74.2 %, with 12.5 % explained by forage nutrient contents, 29.3 % by sward structure, and 32.4 % by their interaction. The daily CH4 emission (g/LW0.75) model had a lower adjusted coefficient of determination (R2adj = 47.6 %), with 16.8 % explained by forage nutrient contents and 30.8 % explained by sward structure, but no effect of the interaction. Our results show that in grazing ecosystems, the forage nutrient contents explain a small fraction, and the greater explanatory power for DMI, ADG, and CH4 emissions models is related to sward structure descriptors, such as sward height and herbage mass. Moreover, the interaction between these variables explains most of the variation. In conclusion, forage nutrient contents and sward structure have different influences on DMI, ADG, and CH4 emissions by grazing ruminants. Because of its relevance to daily CH4 emissions, offering an optimal sward structure to grazing animals is a major climate-smart strategy to improve animal production and mitigate CH4 emissions in pastoral ecosystems.
Collapse
Affiliation(s)
- Lais Leal da Cunha
- Grazing Ecology Research Group, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Carolina Bremm
- State Foundation of Agricultural Research, Rua Gonçalves Dias, 570, Bairro Menino Deus, Porto Alegre, RS, Brazil
| | - Jean Victor Savian
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Pasturas y Forrajes, Estación Experimental INIA Treinta y Tres, Ruta 8 km 281, Treinta y Tres, Uruguay
| | - Ángel Sanchez Zubieta
- Grazing Ecology Research Group, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jusiane Rossetto
- Grazing Ecology Research Group, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
10
|
Smith PE, Kelly AK, Kenny DA, Waters SM. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems. Front Vet Sci 2022; 9:958340. [PMID: 36619952 PMCID: PMC9817038 DOI: 10.3389/fvets.2022.958340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ruminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.
Collapse
Affiliation(s)
- Paul E. Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland,*Correspondence: Paul E. Smith
| | - Alan K. Kelly
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| | - Sinéad M. Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| |
Collapse
|
11
|
Ryan CV, Pabiou T, Purfield DC, Conroy S, Kirwan SF, Crowley JJ, Murphy CP, Evans RD. Phenotypic relationship and repeatability of methane emissions and performance traits in beef cattle using a GreenFeed system. J Anim Sci 2022; 100:6765323. [PMID: 36268991 PMCID: PMC9733524 DOI: 10.1093/jas/skac349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Rumen methanogenesis results in the loss of 6% to 10% of gross energy intake in cattle and globally is the single most significant source of anthropogenic methane (CH4) emissions. The purpose of this study was to analyze greenhouse gas traits recorded in a commercial feedlot unit to gain an understanding into the relationships between greenhouse gas traits and production traits. Methane and carbon dioxide (CO2) data recorded via multiple GreenFeed Emission Monitoring (GEM), systems as well as feed intake, live weight, ultrasound scanning data, and slaughter data were available on 1,099 animals destined for beef production, of which 648 were steers, 361 were heifers, and 90 were bulls. Phenotypic relationships between GEM emission measurements with feed intake, weight traits, muscle ultrasound data, and carcass traits were estimated. Utilization of GEM systems, daily patterns of methane output, and repeatability of GEM system measurements across averaging periods were also assessed. Methane concentrations varied with visit number, duration, and time of day of visit to the GEM system. Mean CH4 and CO2 varied between sex, with mean CH4 of 256.1 g/day ± 64.23 for steers, 234.7 g/day ± 59.46 for heifers, and 156.9 g/day ± 55.98 for young bulls. A 10-d average period of GEM system measurements were required for steers and heifers to achieve a minimum repeatability of 0.60; however, higher levels of repeatability were observed in animals that attended the GEM system more frequently. In contrast, CO2 emissions reached repeatability estimates >0.6 for steers and heifers in all averaging periods greater than 2-d, suggesting that cattle have a moderately consistent CO2 emission pattern across time periods. Animals with heavier bodyweights were observed to have higher levels of CH4 (correlation = 0.30) and CO2 production (correlation = 0.61), and when assessing direct methane, higher levels of dry matter intake were associated with higher methane output (correlation = 0.31). Results suggest that reducing CH4 can have a negative impact on growth and body composition of cattle. Methane ratio traits, such as methane yield and intensity were also evaluated, and while easy to understand and compare across populations, ratio traits are undesirable in animal breeding, due to the unpredictable level of response. Methane adjusted for dry matter intake and liveweight (Residual CH4) should be considered as an alternative emission trait when selecting for reduced emissions within breeding goals.
Collapse
Affiliation(s)
- Clodagh V Ryan
- Irish Cattle Breeding Federation, Ballincollig, Co. Cork, Ireland,Department of Biological Sciences, Munster Technological University, Bishopstown, Co. Cork, Ireland
| | - Thierry Pabiou
- Irish Cattle Breeding Federation, Ballincollig, Co. Cork, Ireland
| | - Deirdre C Purfield
- Department of Biological Sciences, Munster Technological University, Bishopstown, Co. Cork, Ireland
| | - Stephen Conroy
- Irish Cattle Breeding Federation, Ballincollig, Co. Cork, Ireland
| | - Stuart F Kirwan
- Animal Bioscience Research Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - John J Crowley
- AbacusBio Ltd., Dunedin 9016, New Zealand,Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Craig P Murphy
- Department of Biological Sciences, Munster Technological University, Bishopstown, Co. Cork, Ireland
| | | |
Collapse
|
12
|
Zhou J, Xue B, Hu A, Yue S, Wu M, Hong Q, Wu Y, Wang Z, Wang L, Peng Q, Xue B. Effect of dietary peNDF levels on digestibility and rumen fermentation, and microbial community in growing goats. Front Microbiol 2022; 13:950587. [PMID: 36090059 PMCID: PMC9453810 DOI: 10.3389/fmicb.2022.950587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Physically effective neutral detergent fiber (peNDF) is a concept that accounts for the particle length of NDF in diets, sustaining the normal chewing behavior and rumen fermentation of ruminants. Specifically, peNDF>1.18 is the commonest one that is calculated from NDF and the percentage of feed dry matter left on the 1.18, 8.00, and 19.00 mm sieves. This study aimed to investigate the effects of different levels of peNDF>1.18 on the rumen microbiome and its correlation with nutrient digestibility and rumen fermentation in goats. A total of 30 Lezhi black goats were randomized and blocked to five dietary treatments (n = 6). All the diets were identical in composition but varied in hay lengths, leading to the different peNDF>1.18 content of the diets: 32.97, 29.93, 28.14, 26.48, and 24.75%. The results revealed that the nutrient digestibility increased when dietary peNDF>1.18 levels decreased from 32.97% to 28.14%, with the highest digestibility at 28.14% peNDF>1.18 treatment, after which nutrient digestibility decreased with the decreasing of dietary peNDF levels. Ruminal NH3-N concentrations in the 29.93% and 28.14% groups were higher than that in the 24.75% group (p < 0.05). Ruminal microbial protein concentration was the highest in the 32.97% group (p < 0.05). Daily CH4 production in the 32.97% and 24.75% peNDF>1.18 treatments was lower than that in the 26.48% group (p < 0.05) and no differences were observed among other groups. The relative abundance of rumen fungi at the phylum and genus levels and archaea at the species were affected by dietary peNDF>1.18 content. In conclusion, decreasing dietary peNDF>1.18 levels within a certain range can improve nutrient digestibility and change the rumen microbial community structure of goats. Dietary peNDF>1.18 level should be 28.14% (roughage length around 1 cm) among the five levels for 4 months Lezhi black goats with the purpose of optimal nutrient digestibility.
Collapse
Affiliation(s)
- Jia Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Benchu Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Anhai Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shuangming Yue
- Department of Bioengineering, Sichuan Water Conservancy College, Chengdu, China
| | - Mei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yuhan Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Smith PE, Kelly AK, Kenny DA, Waters SM. Differences in the Composition of the Rumen Microbiota of Finishing Beef Cattle Divergently Ranked for Residual Methane Emissions. Front Microbiol 2022; 13:855565. [PMID: 35572638 PMCID: PMC9099143 DOI: 10.3389/fmicb.2022.855565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
With the advent of high throughput technology, it is now feasible to study the complex relationship of the rumen microbiota with methanogenesis in large populations of ruminant livestock divergently ranked for enteric emissions. Recently, the residual methane emissions (RME) concept has been identified as the optimal phenotype for assessing the methanogenic potential of ruminant livestock due to the trait's independence from animal productivity but strong correlation with daily methane emissions. However, there is currently a dearth of data available on the bacterial and archaeal microbial communities residing in the rumens of animals divergently ranked for RME. Therefore, the objective of this study was to investigate the relationship between the rumen microbiota and RME in a population of finishing beef cattle. Methane emissions were estimated from individual animals using the GreenFeed Emissions Monitoring system for 21 days over a mean feed intake measurement period of 91 days. Residual methane emissions were calculated for 282 crossbred finishing beef cattle, following which a ∼30% difference in all expressions of methane emissions was observed between high and low RME ranked animals. Rumen fluid samples were successfully obtained from 268 animals during the final week of the methane measurement period using a trans-oesophageal sampling device. Rumen microbial DNA was extracted and subjected to 16S rRNA amplicon sequencing. Animals ranked as low RME had the highest relative abundances (P < 0.05) of lactic-acid-producing bacteria (Intestinibaculum, Sharpea, and Olsenella) and Selenomonas, and the lowest (P < 0.05) proportions of Pseudobutyrivibrio, Butyrivibrio, and Mogibacterium. Within the rumen methanogen community, an increased abundance (P < 0.05) of the genus Methanosphaera and Methanobrevibacter RO clade was observed in low RME animals. The relative abundances of both Intestinibaculum and Olsenella were negatively correlated (P < 0.05) with RME and positively correlated with ruminal propionate. A similar relationship was observed for the abundance of Methanosphaera and the Methanobrevibacter RO clade. Findings from this study highlight the ruminal abundance of bacterial genera associated with the synthesis of propionate via the acrylate pathway, as well as the methanogens Methanosphaera and members of the Methanobrevibacter RO clade as potential microbial biomarkers of the methanogenic potential of beef cattle.
Collapse
Affiliation(s)
- Paul E. Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Meath, Ireland
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| | - Alan K. Kelly
- UCD School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Meath, Ireland
| | - Sinéad M. Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Meath, Ireland
| |
Collapse
|