1
|
Kong Y, Li F, Yue X, Xu Y, Bai J, Fu W. SNPS within the SLC27A6 gene are highly associated with Hu sheep fatty acid content. Gene 2024; 927:148716. [PMID: 38914245 DOI: 10.1016/j.gene.2024.148716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Fatty acids (FA) are an important factor affecting meat quality and human health, and the important role of the solute carrier family 27 member 6 (SLC27A6) in FA metabolism has been demonstrated in several species. However, the expression profile of the SLC27A6 in different tissues and the effect of its polymorphism on FA in sheep are currently unknown. This study aimed to explore the differences in FAs in the longissimus dorsi (LD) of 1,085 Hu sheep, the expression profile of SLC27A6, and confirm the effect of single nucleotide polymorphisms (SNPs) on FA phenotypes. We found that many FA phenotypes differ significantly across different seasons, and winter promoted the deposition of polyunsaturated fatty acids (PUFA). The mRNA expression level of SLC27A6 in the lung was significantly higher than that in the heart, testis, and LD. A total of 16 SNPs were detected in the SLC27A6, and 14 SNPs were successfully genotyped by improved multiplex ligase detection reaction (iMLDR) technology. Correlation analysis showed that 7 SNPs significantly affected at least one FA phenotype. Among them, SNP14 contributes to the selection of lamb with low saturated fatty acid content and high PUFA content. Combined genotypes also significantly affected a variety of beneficial FAs such as C18:3n3, C20:4n6, C22:6n3, and monounsaturated fatty acids. This study suggests that SLC27A6 plays an important role in FA metabolism and SNPs that are significantly associated with FA phenotype could be used as potential molecular markers for later targeted regulation of FA profiles in sheep.
Collapse
Affiliation(s)
- Yuanyuan Kong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanli Xu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830057, China
| | - Jingjing Bai
- Animal Husbandry and Veterinary Extension Station of Wuwei City, Wuwei 733000, China
| | - Weiwei Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
2
|
Chang L, Niu X, Huang S, Song D, Ran X, Wang J. Detection of structural variants linked to mutton flavor and odor in two closely related black goat breeds. BMC Genomics 2024; 25:979. [PMID: 39425017 PMCID: PMC11490145 DOI: 10.1186/s12864-024-10874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Mutton quality is closely related to genetic variants and gene expression alterations during growth and development, resulting in differences in nutritional values, flavor, and odor. RESULTS We first evaluated and compared the composition of crude protein, crude fat, cholesterol, amino acid (AA), and fatty acid (FA) in the longissimus dorsi muscle of Guizhou black goats (GZB, n = 5) and Yunshang black goats (YBG, n = 6). The contents of cholesterol and FA related to odor in GZB were significantly lower than that in YBG, while the concentrations of umami amino acids and intramuscular fat were significantly higher in GZB. Furthermore, structural variants (SVs) in the genomes of GZB (n = 30) and YBG (n = 11) were explored. It was found that some regions in Chr 10/12/18 were densely involved with a large number of SVs in the genomes of GZB and YBG. By setting FST ≥ 0.25, we got 837 stratified SVs, of which 25 SVs (involved in 12 genes, e.g., CORO1A, CLIC6, PCSK2, and TMEM9) were limited in GZB. Functional enrichment analysis of 14 protein-coding genes (e.g., ENPEP, LIPC, ABCA5, and SLC6A15) revealed multiple terms and pathways related with metabolisms of AA, FA, and cholesterol. The SVs (n = 10) obtained by the whole genome resequencing were confirmed in percentages of 36.67 to 86.67% (n = 96) by PCR method. The SVa and SVd polymorphisms indicated a moderate negative correlation with HMGCS1 activity (n = 17). CONCLUSION This study is the first to comprehensively reveal potential SVs related to mutton nutritional values, flavor, and odor based on genomic compare between two black goat breeds with closely genetic relationship. The SVs generated in this study provide a data resource for deeper studies to understand the genomic characteristics and possible evolutionary outcomes with better nutritional values, flavor and extremely light odor.
Collapse
Affiliation(s)
- Lingle Chang
- College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Shihui Huang
- College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Derong Song
- Bijie Academy of Agricultural Sciences, Bijie, 551700, China
| | - Xueqin Ran
- College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Zhang X, Wang Z, Liu C, Li W, Yuan Z, Li F, Yue X. Multi-omics analysis of chemical composition variation among different muscle types in Hu lamb. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39400907 DOI: 10.1002/jsfa.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Consumers' preferences for lamb meat vary greatly depending on the specific cut. Variations in the chemical composition across different muscle types play a crucial role in determining meat quality, particularly with regard to flavor. Therefore, it is essential to study the variations in chemical composition among different muscle types in lamb, as well as the mechanisms behind their formation, aiming to understand the flavor variation across the muscle types. RESULTS Flank muscles showed significantly higher intramuscular fat content and muscle fiber diameter compared to triceps brachii and biceps femoris (BF), at the same time as displaying a significantly lower percentage of type I muscle fibers. Forty-three differentially abundant volatile compounds (DAVC) were identified across five muscles, with the majority of DAVCs being more abundant in the BF. In total, 161 differentially abundant lipids were identified across five muscles, with triglycerides (TG), phosphatidylcholines (PC), phosphatidyl ethanolamines (PE) and phosphatidylmethanol (PMeOH) showing a strong correlation with DAVCs. A lipid-gene regulatory network was established, encompassing 664 lipids and 11 107 genes, leading to the identification of pathways and genes that regulate the metabolism of PEs, PMeOH, PCs and TGs. CONCLUSION The present study showed the significant variation in flavor compounds among the five edible muscles, as well as the potential reasons for their formation. The results potentially provide a theoretical foundation for improving the meat quality of lamb. © 2024 Society of Chemical Industry. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chongyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenqiao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Pei S, Wang Z, Liu Y, Xu Y, Bai J, Li W, Li F, Yue X. Transcriptomic analysis of the HPG axis-related tissues reveals potential candidate genes and regulatory pathways associated with testicular size in Hu sheep. Theriogenology 2024; 216:168-176. [PMID: 38185016 DOI: 10.1016/j.theriogenology.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Testicular size is an excellent proxy for selecting high-fertility rams. The hypothalamus-pituitary-gonadal (HPG) axis plays an important role in regulating reproductive capacity in vertebrates, while key genes and regulatory pathways within the HPG axis associated with testicular size remain largely unknown in sheep. This study comprehensively compared the transcriptomic profiles in the hypothalamus, pituitary and testis of rams after sexual maturity between the large-testis group (LTG, testicular weight = 454.29 ± 54.24 g) and the small-testis group (STG, testicular weight = 77.29 ± 10.76 g). In total, 914, 795 and 10518 differentially expressed genes (DEGs) were identified in the hypothalamus, pituitary and testis between LTG and STG, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DEGs were mainly involved in the biological processes of reproduction, biological regulation, and development process. Notably, the neuroactive ligand-receptor interaction and cAMP signaling pathways, commonly enriched by the DEGs in the hypothalamus and pituitary between two groups, were considered as two key signal pathways regulating testicular development through the HPGs axis. Weighted gene co-expression network analysis (WGCNA) identified two modules that were significantly associated with testicular size, and 97 key genes were selected with high module membership (MM) and gene significance (GS) in these two modules. Finally, a protein-protein interaction (PPI) network was constructed, and ten genes with the highest degree were represented as hub genes, including FOS, NPY, SST, F2, AGT, NTS, OXT, EDN1, VIP and TAC1. Taken together, these results provide new insights into the molecular mechanism underlying the HPG axis regulating testicular size of Hu sheep.
Collapse
Affiliation(s)
- Shengwei Pei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yangkai Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yanli Xu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi, 830057, China
| | - Jingjing Bai
- Animal Husbandry and Veterinary Extension Station of Wuwei City, Wuwei, 733000, China
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
5
|
Zhu S, Zhang B, Zhu T, Wang D, Liu C, Liu Y, He Y, Liang W, Li W, Han R, Li D, Yan F, Tian Y, Li G, Kang X, Li Z, Jiang R, Sun G. miR-128-3p inhibits intramuscular adipocytes differentiation in chickens by downregulating FDPS. BMC Genomics 2023; 24:540. [PMID: 37700222 PMCID: PMC10496186 DOI: 10.1186/s12864-023-09649-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content is the major indicator for evaluating chicken meat quality due to its positive correlation with tenderness, juiciness, and flavor. An increasing number of studies are focusing on the functions of microRNAs (miRNAs) in intramuscular adipocyte differentiation. However, little is known about the association of miR-128-3p with intramuscular adipocyte differentiation. Our previous RNA-seq results indicated that miR-128-3p was differentially expressed at different periods in chicken intramuscular adipocytes, revealing a possible association with intramuscular adipogenesis. The purpose of this research was to investigate the biological functions and regulatory mechanism of miR-128-3p in chicken intramuscular adipogenesis. RESULTS The results of a series of assays confirmed that miR-128-3p could promote the proliferation and inhibit the differentiation of intramuscular adipocytes. A total of 223 and 1,050 differentially expressed genes (DEGs) were identified in the mimic treatment group and inhibitor treatment group, respectively, compared with the control group. Functional enrichment analysis revealed that the DEGs were involved in lipid metabolism-related pathways, such as the MAPK and TGF-β signaling pathways. Furthermore, target gene prediction analysis showed that miR-128-3p can target many of the DEGs, such as FDPS, GGT5, TMEM37, and ASL2. The luciferase assay results showed that miR-128-3p targeted the 3' UTR of FDPS. The results of subsequent functional assays demonstrated that miR-128-3p acted as an inhibitor of intramuscular adipocyte differentiation by targeting FDPS. CONCLUSION miR-128-3p inhibits chicken intramuscular adipocyte differentiation by downregulating FDPS. Our findings provide a theoretical basis for the study of lipid metabolism and reveal a potential target for molecular breeding to improve meat quality.
Collapse
Affiliation(s)
- Shuaipeng Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Binbin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Dongxue Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yixuan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenjie Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Fengbin Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China.
- The Shennong Seed Industry Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|