1
|
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Invited review: Current enteric methane mitigation options. J Dairy Sci 2022; 105:9297-9326. [DOI: 10.3168/jds.2022-22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
|
2
|
Artiles-Ortega E, Portal O, Jeyanathan J, Reguera-Barreto B, de la Fé-Rodríguez PY, Lima-Orozco R, Fievez V. Performance, Rumen Microbial Community and Immune Status of Goat Kids Fed Leucaena leucocephala Post-weaning as Affected by Prenatal and Early Life Nutritional Interventions. Front Microbiol 2022; 12:769438. [PMID: 35250899 PMCID: PMC8889121 DOI: 10.3389/fmicb.2021.769438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Leucaena leucocephala represents a local protein source in tropical ruminant diets. However, its full exploitation is impaired by mimosine, unless it is degraded by the rumen microbial community. Recently, the ruminal bacterial communities of newborns were persistently modified through prenatal or postnatal dietary interventions. Such early-life interventions might enhance adaptation of ruminants to Leucaena leucocephala, which was investigated using a 2 × 2 factorial design trial that tested both supplementation of L. leucocephala in the late pregnancy diet of goat does, and supplementation of live yeast to their newborns. The composition of ruminal bacteria, immune status, as well as organic matter digestibility (OMD) and performance of kids were studied during and after the intervention. Ten pregnant goats were divided into two groups: the D+ and D- groups, which either received or did not receive 30 g of L. leucocephala forage meal during the last 7 ± 0.5 weeks of gestation. Twins from each goat were divided into the K+ and K- group (supplemented with or without 0.2 g/d of live yeast from day 3 until weaning at 8 weeks). Rumen samples were collected from 4-, 8-, 14-, and 20-weeks old kids to assess the bacterial community, while immune parameters (white blood cells, immunoglobulin M and G, and chitotriosidase activity) were measured in blood and saliva sampled at 4-, 8-, and 20-weeks. We found a stimulatory effect of the prenatal exposure on the post-weaning dry matter intake of the L. leucocephala supplemented diet, resulting in a higher daily gain and final body weight at 20 weeks in the D+ vs. D- group (406 vs. 370 g DM/d, 85.4 vs. 78.6 g/d, and 15.2 vs. 13.8 kg, respectively). Moreover, Ruminococcus represented a greater proportion of the rumen bacterial community of the D+ vs. D- kids (5.1 vs. 1.6%). Differences in the immune status were relatively small and not thought to be a driving factor of differences in animal performance. Furthermore, postnatal supplementation of live yeast favored maturation of the rumen bacterial community (i.e., greater abundance of Bacteroidetes, in particular Prevotella, and reduced abundance of Firmicutes) and protozoa colonization. Concomitantly, OMD was enhanced post-weaning, suggesting effects of the early-life intervention persisted and could have affected animal performance.
Collapse
Affiliation(s)
- Einar Artiles-Ortega
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Departamento de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
| | - Orelvis Portal
- Departamento de Biología, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
| | - Jeyamalar Jeyanathan
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Beydis Reguera-Barreto
- Departamento de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
| | - Pedro Yoelvys de la Fé-Rodríguez
- Departamento de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
| | - Raciel Lima-Orozco
- Departamento de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Guo W, van Niekerk JK, Zhou M, Steele MA, Guan LL. Longitudinal assessment revealed the shifts in rumen and colon mucosal-attached microbiota of dairy calves during weaning transition. J Dairy Sci 2021; 104:5948-5963. [PMID: 33612210 DOI: 10.3168/jds.2020-19252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
The objectives of this study were to investigate the shifts in rumen and colon mucosa-associated microbiota in dairy calves fed a high milk replacer feeding rate before and after weaning and to determine whether such shifts are associated with tissue physiological measures. Longitudinal biopsy was performed to collect rumen and colon mucosal tissues of 4 ruminally cannulated Holstein dairy bull calves (weaned at 6 wk of age) at the end of wk 5 (before weaning), 7 (weaning adaptation) and 12 (after weaning), and were used to assess mucosa-associated microbiota and their changes using amplicon sequencing. Both rumen and colon mucosa-associated bacterial communities shifted during the weaning process, as evidenced by their clear separation among 3 different weaning periods and increased α diversity (Shannon and Chao1 indices) during weaning transition. Among the 3 dominant bacterial phyla identified (relative abundance >1.0%), the relative abundance of Proteobacteria and Bacteroidetes decreased in the rumen mucosa, whereas the relative abundance of Firmicutes increased in both rumen and colon mucosa during weaning transition. In the rumen mucosa, Campylobacter (0.6-22.1%) gradually became prevalent during weaning transition, whereas Succinivibrio (6.2-10.3%) and Prevotella 1 (4.7-10.5%) were dominant regardless of weaning transition. In the colon mucosa, Bacteroides (12.8-25.4%) was dominant during weaning transition, although its relative abundance decreased after weaning. In the meantime, relative abundance of uncultured Lachnospiraceae increased from 2.2% to 25.7% during this period. In addition, genera Pyramidobacter (in the rumen mucosa) and Lachnoclostridium (in the colon mucosa) were positively correlated with rumen papilla surface area and colon mucosal thickness, respectively. Moreover, genera Ruminococcaceae UCG-005 and Sharpea in the rumen mucosa were positively correlated with the molar proportion of propionate and butyrate, respectively. Overall, our findings revealed that rumen and colon mucosa-associated bacterial communities altered in response to the weaning transition, and some bacterial taxa in these communities may have positive effects on rumen and colon mucosa development during this period.
Collapse
Affiliation(s)
- W Guo
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada AB T6G 2P5
| | - J K van Niekerk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada AB T6G 2P5
| | - M Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada AB T6G 2P5
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada AB T6G 2P5.
| |
Collapse
|
4
|
Zhu La ALT, Pierce K, Liu W, Gao S, Bu D, Ma L. Supplementation with Schizochytrium sp. enhances growth performance and antioxidant capability of dairy calves before weaning. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Shi L, Zhang Y, Wu L, Xun W, Liu Q, Cao T, Hou G, Zhou H. Moderate Coconut Oil Supplement Ameliorates Growth Performance and Ruminal Fermentation in Hainan Black Goat Kids. Front Vet Sci 2020; 7:622259. [PMID: 33426036 PMCID: PMC7785786 DOI: 10.3389/fvets.2020.622259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
The study investigated amelioration effects of coconut oil (CO) on growth performance, nutrient digestibility, ruminal fermentation, and blood metabolites in Hainan Black goat kids. Twenty-four Hainan Black goat kids (10 days of age) were assigned randomly to four treatments for 90 days, including pre-weaning (10-70 d of age) and post-weaning (70-100 d of age) days. The treatment regimens were control (CON), low CO (LCO), medium CO (MCO), and high CO (HCO) with 0, 4, 6, 8 g CO per goat per day, respectively. During the pre-weaning period, the average daily gain (ADG) linearly and quadratically increased (P < 0.05), whereas the average daily feed intake (ADFI) linearly decreased, and the feed conversion ratio (FCR) also decreased linearly and quadratically by increasing CO supplementation (P < 0.05). During the post-weaning period, increasing CO supplementation linearly and quadratically increased the BW at 100 days and ADG (P < 0.05), but quadratically decreased the ADFI and FCR (P < 0.05). The digestibility of ether extract (EE) linearly and quadratically increased with increasing CO supplementation (P < 0.05). Supplementation of CO linearly increased ruminal pH (P < 0.05), but linearly decreased (P < 0.05) ammonia-N, total VFAs, molar proportions of acetate, ruminal microbial enzyme activity of carboxymethyl-cellulase, cellobiase, xylanase, pectinase and α-amylase, and number of total protozoa, the abundance of Ruminococcus albus, Ruminococcus flavefaciens, Fibrobacter succinogenes, Butyrivibrio fibrisolvens, Prevotella ruminicola, and Ruminobacter amylophilus. The estimated methane emission decreased linearly and quadratically with increasing CO addition (P < 0.05). The serum concentration of triglycerides (TG), non-esterified fatty acids (NEFA) and growth hormone (GH) linearly (P < 0.05) increased by raising the CO supplementation. The present results indicate that CO supplementation at 6 g/day per goats is optimum due to improved growth performance and decreased estimated methane emission. Supplementation CO up to 8 g/day depressed growth and feed conversion due to its suppression of growth performance, rumen protozoa, cellulolytic bacteria and microbial enzyme activity, and reduced ADF and ADF digestibility.
Collapse
Affiliation(s)
- Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yu Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Lingli Wu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Wenjuan Xun
- College of Animal Sciences and Technology, Hainan University, Haikou, China
| | - Qiang Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Ting Cao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
6
|
Yanza YR, Szumacher-Strabel M, Jayanegara A, Kasenta AM, Gao M, Huang H, Patra AK, Warzych E, Cieślak A. The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and in vivo: A meta-analysis. J Anim Physiol Anim Nutr (Berl) 2020; 105:874-889. [PMID: 32333621 DOI: 10.1111/jpn.13367] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/03/2020] [Accepted: 03/21/2020] [Indexed: 11/28/2022]
Abstract
The efficacy of methane (CH4 ) suppression using medium-chain fatty acids (MCFA) remains inconclusive, despite a number of studies on this topic are available. We thus carried out a meta-analysis to integrate the published data on different concentrations and types of MCFA such as lauric acid and myristic acid, which investigated ruminal methanogenesis and fermentation in in vitro and in vivo experiments. In vitro MCFA sources were classified either as pure MCFA (lauric acid, myristic acid and their combinations) or as natural MCFA-rich oils (canola oil enriched with lauric acids, coconut oil, krabok oil and palm kernel oil). The MCFA sources used in the in vivo studies were coconut oil, lauric acid, myristic acid and the combination of lauric and myristic acids. A total of 41 studies (20 in vitro and 21 in vivo studies) were compiled in our database, which included the data on CH4 emission, digestibility, ruminal fermentation products and microbial populations. The results showed that the amount of CH4 production per unit of digested organic matter decreased linearly under in vitro conditions (p < .01) and tended to decrease quadratically under in vivo conditions (p < .07) with increasing doses of MCFA. Populations of protozoa (p < .01) in both in vitro and in vivo responded negatively in a linear manner, whereas Archaea population diminished quadratically (p = .04) only in the in vitro conditions with increasing doses of MCFA. Increasing dietary MCFA concentrations also reduced the fibre digestibility linearly (p < .05) in both in vitro and in vivo conditions. CH4 production for different sources of MCFA decreased in following order: coconut oil > lauric acid > myristic acid > mixed lauric and myristic acids > palm kernel oil > canola oil enriched with lauric acids > krabok oil. It can be concluded that the effect of MCFA on ruminal methanogenesis depends on the amount and type of MCFA.
Collapse
Affiliation(s)
- Yulianri Rizki Yanza
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland.,Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia.,Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Andre Meiditama Kasenta
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia.,Livestock Production Program, Polytechnic Agriculture and Animal Science (MAPENA), Tuban, Indonesia
| | - Min Gao
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Haihao Huang
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, India
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Adam Cieślak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
7
|
Abstract
AbstractThe aim of this Research Reflection is to describe the basic rumen function of goats and its modification in response to environmental factors, as well as to discuss similarities and differences when compared to other ruminants. In so doing we shall reveal the adaptive capacity of goats to harsh environments. The basic rumen function in goats is similar to other species of ruminants, as stressed by the opportunity to apply the updates of feeding systems for ruminants to goats. The rumen epithelium acts as a protective barrier between the rumen and the host, but it can be damaged by toxic compounds or acidosis. The rumen also plays an important role in water balance, both for dehydration and rehydration. Recent studies show that the microbiota exhibits a high fractional stability due to functional redundancy and resilience, but this needs more investigation. The microbial community structure differs between goats and cows, which explains the difference in sensitivity to milk fat depression following intake of high lipid diets. Goats also differ from other ruminants by their enhanced ability to feed-sort, but as with cows they can suffer from acidosis. Nevertheless, goats can be considered to be very resistant to environmental factors such as water stress, salt stress or heat stress, and this is especially so in some endogenous breeds. They also are able to detoxify tannins, polyphenols and other secondary metabolites. Some new trials involving feeding behaviour, microbiota and omics or approaches by meta-analyses or modelling will improve our knowledge of rumen function in goats.
Collapse
|
8
|
Zhou Z, Huang J, Hao H, Wei H, Zhou Y, Peng J. Applications of new functions for inducing host defense peptides and synergy sterilization of medium chain fatty acids in substituting in-feed antibiotics. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
9
|
Ruiz-González A, Debruyne S, Dewanckele L, Escobar M, Vandaele L, Van Den Broeck W, Fievez V. Supplementation of DHA-Gold pre and/or postnatally to goat kids modifies in vitro methane production and rumen morphology until 6 mo old. J Anim Sci 2018; 96:4845-4858. [PMID: 30059970 DOI: 10.1093/jas/sky307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/27/2018] [Indexed: 11/12/2022] Open
Abstract
This study aimed to investigate the effect of pre and/or postnatal supplementation of a dry whole cell algae (DHA-Gold) to goat kids, on in vitro methane (CH4) production, animal growth, and rumen morphology at the age of 6 mo. Furthermore, the in vitro retreatment effect of DHA-Gold was evaluated. Twenty pregnant Saanen goats giving birth to 2 male kids were used. Half of these does were supplemented (D+) with 18.2 g/d of DHA-Gold in the last 3 wk of pregnancy, whereas the other half was not (D-). After kidding, one goat kid per doe in both groups was supplemented daily with 0.28 g/kg of body weight of DHA-Gold (k+) until 12 wk, whereas the other goat kids were untreated (k-). This resulted in 4 experimental groups D+k+, D+k-, D-k+, and D-k-. In vitro incubations were performed at the ages of 4 wk, 11 wk, and 6 mo. At the age of 6 mo, goat kids were euthanized and additional incubations were performed supplementing 4 doses of DHA-Gold (0, 0.4, 0.8, and 1.6 mg/mL). Additionally, rumen tissue of the atrium ruminis, ventral rumen, and dorsal blind sac were collected to assess rumen morphology. Rumen inocula of 4-wk-old goat kids supplemented D+ showed lower (P < 0.05) in vitro CH4 production, however, this was mainly due to a reduction in the overall fermentation, while CH4 expressed relatively to total volatile fatty acids (VFA) was higher when goat kids were treated D+ or k+. The detrimental D+ effect on VFA production diminished at 11 wk old but remained a tendency (0.05 < P < 0.1). As for 4 wk D+ as well as k+ supplementation of DHA-Gold stimulated rather than inhibited in vitro CH4 production expressed relative to total VFA. Supplementation of DHA-Gold either D+ or k+ decreased density, width, and surface area of the ruminal papillae. However, no effect on animal growth was observed. Moreover, detrimental effects of D+ or k+ treatment on VFA production or stimulation of relative CH4 production were no longer observed at 6 mo old. Nevertheless, direct exposure of DHA-Gold to 6-mo-old inoculum linearly (P < 0.05) decreased CH4 and VFA production, which tended (P = 0.06) to be greater when using D-rumen inoculum. Accordingly, neither D+ nor k+ DHA-Gold supplementation showed potential for reduction of rumen methanogenesis. Furthermore, this early life intervention could represent some risk for impaired rumen papillae development, which, however, did not impair animal performance.
Collapse
Affiliation(s)
- A Ruiz-González
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - S Debruyne
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of animal science, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Melle, Belgium
| | - L Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - M Escobar
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - L Vandaele
- Department of animal science, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Melle, Belgium
| | - W Van Den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|