1
|
Chen J, Duan C, Yue S, Liu X, Li J, Zhang Y, Liu Y. Energy Metabolite, Immunity, Antioxidant Capacity, and Rumen Microbiota Differences Between Ewes in Late Gestation Carrying Single, Twin, and Triplet Fetuses. Animals (Basel) 2024; 14:3326. [PMID: 39595378 PMCID: PMC11591013 DOI: 10.3390/ani14223326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The objective of this study was to investigate the differences in the energy metabolites, immunity, antioxidant capacity, and rumen microbiota of ewes with different numbers of fetuses. Thirty healthy ewes were selected and divided into single- (SL, n = 10), twin- (TL, n = 10), and triplet-fetal (PL, n = 10) ewes according to the number of fetuses. Sampling was carried out on days 21 (Q21) and 7 (Q7) before lambing. The results show no differences (p > 0.05) in the DMI and BW of ewes with different numbers of fetuses, and the body condition score (BCS) of PL ewes was lower (p < 0.05) than that of SL ewes. The concentrations of β-hydroxybutyric acid (BHBA), non-esterified fatty acids (NEFA), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) in the PL ewes were higher (p < 0.05), while the glucose (Glu), triglyceride (TG), total cholesterol (TC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) values were lower (p < 0.05) than those of the SL ewes. ANOSIM analysis showed that the rumen bacterial structure of the SL, TL, and PL ewes was different on days Q21 and Q7. The relative abundance of Firmicutes and Bacteroidota in the rumen was affected (p < 0.05) by the number of fetuses: the relative abundance of Firmicutes (Ruminococcus, Butyrivibrio, Christensenellaceae_R-7_group, Lachnospiraceae_AC2044_group, Lachnospiraceae_XPB1014_group, and Anaeroplasma) was higher (p < 0.05), while that of Bacteroidota (Prevotella, Prevotellaceae_UCG-003, and Prevotellaceae_UCG-001) was lower (p < 0.05) in the SL ewes than in the PL ewes. In summary, the rumen microbial structure and energy metabolites of ewes in late gestation with different numbers of fetuses were different. Triplet-fetal ewes were characterized by lower BCS and antioxidant capacity and were prone to the triggering of inflammatory responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (C.D.); (S.Y.); (X.L.); (J.L.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (C.D.); (S.Y.); (X.L.); (J.L.)
| |
Collapse
|
2
|
Ruampatana J, Suwimonteerabutr J, Homyog K, Mekboonsonglarp W, Kanjanavaikoon K, der Veken WV, Poonyachoti S, Feyera T, Settachaimongkon S, Nuntapaitoon M. Clostridium butyricum Probiotic Feed Additive: Modulation of Sow Milk Metabolomics and Mitigation of Pre-Weaning Piglet Diarrhea. Animals (Basel) 2024; 14:2098. [PMID: 39061560 PMCID: PMC11273528 DOI: 10.3390/ani14142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The present study aimed to investigate the impact of Clostridium butyricum probiotic feed additive on sow and piglet performances, together with alterations in the lipidomic and metabolomic profiles of sow milk. Sixty-four Landrace × Yorkshire crossbred sows and 794 piglets were included. Sows were divided into two groups; i.e., (i) conventional gestation diet (control; n = 35) and (ii) conventional diet added with 10 g/sow/day of probiotic C. butyricum spores (treatment; n = 29) from one week before the estimated farrowing day until weaning (29.6 ± 4.8 days). The sow and piglet performances and incidence of piglet diarrhea were recorded. Changes in gross chemical composition, fatty acid and non-volatile polar metabolite profiles of sow colostrum, transient milk and mature milk were evaluated. The results showed that relative backfat loss in the treatment group (-2.3%) was significantly lower than in control group (11.6%), especially in primiparous sows (p = 0.019). The application of C. butyricum probiotics in sows significantly reduced the incidence of diarrhea in piglets (p < 0.001) but no other effect on piglet performance was found. Lipidomic and metabolomic analyses revealed variations in sow colostrum and milk biomolecular profiles, with indicative compounds significantly altered by feeding with the C. butyricum probiotics. In conclusion, the use of C. butyricum probiotics in sows may improve sow body condition and reduce diarrhea incidence in piglets, with underlying changes in milk composition that warrant further investigation. These findings support the potential of C. butyricum as a beneficial feed additive in swine production.
Collapse
Affiliation(s)
- Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | - Sutthasinee Poonyachoti
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takele Feyera
- Department of Animal Science and Veterinary Sciences, Aarhus University, AU-Viborg, DK-8830 Tjele, Denmark
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Zhang M, Zhang Z, Zhang X, Lu C, Yang W, Xie X, Xin H, Lu X, Ni M, Yang X, Lv X, Jiao P. Effects of dietary Clostridium butyricum and rumen protected fat on meat quality, oxidative stability, and chemical composition of finishing goats. J Anim Sci Biotechnol 2024; 15:3. [PMID: 38225608 PMCID: PMC10789026 DOI: 10.1186/s40104-023-00972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Clostridium butyricum (CB) is a probiotic that can regulate intestinal microbial composition and improve meat quality. Rumen protected fat (RPF) has been shown to increase the dietary energy density and provide essential fatty acids. However, it is still unknown whether dietary supplementation with CB and RPF exerts beneficial effects on growth performance and nutritional value of goat meat. This study aimed to investigate the effects of dietary CB and RPF supplementation on growth performance, meat quality, oxidative stability, and meat nutritional value of finishing goats. Thirty-two goats (initial body weight, 20.5 ± 0.82 kg) were used in a completely randomized block design with a 2 RPF supplementation (0 vs. 30 g/d) × 2 CB supplementation (0 vs. 1.0 g/d) factorial treatment arrangement. The experiment included a 14-d adaptation and 70-d data and sample collection period. The goats were fed a diet consisted of 400 g/kg peanut seedling and 600 g/kg corn-based concentrate (dry matter basis). RESULT Interaction between CB and RPF was rarely observed on the variables measured, except that shear force was reduced (P < 0.05) by adding CB or RPF alone or their combination; the increased intramuscular fat (IMF) content with adding RPF was more pronounced (P < 0.05) with CB than without CB addition. The pH24h (P = 0.009), a* values (P = 0.007), total antioxidant capacity (P = 0.050), glutathione peroxidase activities (P = 0.006), concentrations of 18:3 (P < 0.001), 20:5 (P = 0.003) and total polyunsaturated fatty acids (P = 0.048) were increased, whereas the L* values (P < 0.001), shear force (P = 0.050) and malondialdehyde content (P = 0.044) were decreased by adding CB. Furthermore, CB supplementation increased essential amino acid (P = 0.027), flavor amino acid (P = 0.010) and total amino acid contents (P = 0.024) as well as upregulated the expression of lipoprotein lipase (P = 0.034) and peroxisome proliferator-activated receptor γ (PPARγ) (P = 0.012), and downregulated the expression of stearoyl-CoA desaturase (SCD) (P = 0.034). The RPF supplementation increased dry matter intake (P = 0.005), averaged daily gain (trend, P = 0.058), hot carcass weight (P = 0.046), backfat thickness (P = 0.006), concentrations of 16:0 (P < 0.001) and c9-18:1 (P = 0.002), and decreased the shear force (P < 0.001), isoleucine (P = 0.049) and lysine content (P = 0.003) of meat. In addition, the expressions of acetyl-CoA carboxylase (P = 0.003), fatty acid synthase (P = 0.038), SCD (P < 0.001) and PPARγ (P = 0.022) were upregulated due to RPF supplementation, resulting in higher (P < 0.001) content of IMF. CONCLUSIONS CB and RPF could be fed to goats for improving the growth performance, carcass traits and meat quality, and promote fat deposition by upregulating the expression of lipogenic genes of Longissimus thoracis muscle.
Collapse
Affiliation(s)
- Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiyue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinlong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Changming Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Lethbridge, T1J 4B1, Canada
| | - Xiaolai Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hangshu Xin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaotan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mingbo Ni
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Xinyue Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, 225009, China
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia.
| |
Collapse
|
4
|
Chen M, Zhao Y, Ji H, Li L, Liu H, Wang S, Zhang D, Yin J, Wang J, Zhang X. Chenodeoxycholic Acid Improves Embryo Implantation and Metabolic Health through Modulating Gut Microbiota-Host Metabolites Interaction during Early Pregnancy. Antioxidants (Basel) 2023; 13:8. [PMID: 38275628 PMCID: PMC10812749 DOI: 10.3390/antiox13010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Fetus loss in early pregnancy is of major concern to both humans and animals, and this issue is largely influenced by embryo implantation. Chenodeoxycholic acid (CDCA), a primary bile acid, contributes to metabolic improvements and protects against intrahepatic cholestasis of pregnancy. However, the effect of CDCA on embryo implantation during early pregnancy has not been investigated. The present study demonstrated that CDCA administration during early pregnancy improved embryo implantation in sows and rats, thereby improving the pregnancy outcomes of sows. CDCA significantly reduced inflammation, oxidative stress, and insulin resistance. The metabolomics analysis indicated significant differences in the fecal metabolome, especially regarding the level of secondary bile acids, between the control and CDCA-treated sows. CDCA also influenced the serum metabolite profiles in sows, and the serum L-Histidine level was significantly correlated with the abundance of 19 differential fecal metabolites. Importantly, L-Histidine administration improved embryo implantation and metabolic health in rats during early pregnancy. Moreover, CDCA administration during early pregnancy also led to long-term metabolic improvements in sows. Our data indicated that CDCA improved embryo implantation by alleviating inflammation and oxidative stress, improving insulin sensitivity, and modulating the interaction between the gut microbiota and host metabolites. Therefore, CDCA intervention is a potential therapeutic strategy regarding embryo loss during pregnancy.
Collapse
Affiliation(s)
- Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Ying Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.C.); (H.J.); (L.L.); (H.L.); (S.W.); (D.Z.)
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
5
|
Jo H, Kim BG. Effects of dietary fiber in gestating sow diets - A review. Anim Biosci 2023; 36:1619-1631. [PMID: 37641826 PMCID: PMC10623041 DOI: 10.5713/ab.23.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
The objective of this review was to provide an overview of the effects of dietary fiber (DF) on reproductive performance in gestating sows. Dietary fibers have been suggested to modulate microbiota in the intestine and the immune system of gestating sows and to improve gut health. Thus, DF may help alleviate the adverse effects of the stressful production cycle of gestating sows. These benefits may subsequently result in improved reproductive performance of sows. Previous studies have reported changes in microbiota by providing gestating sows with DF, and the responses of microbiota varied depending on the source of DF. The responses by providing DF to gestating sows were inconsistent for antioxidative capacity, hormonal response, and inflammatory response among the studies. The effects of DF on reproductive performance were also inconsistent among the previous studies. Potential reasons contributing to these inconsistent results would include variability in reproductive performance data, insufficient replication, influence of other nutrients contained in the DF diets, characteristics of DF, and experimental periods. The present meta-analysis suggests that increasing the total DF concentration by 10 percentage units (e.g., 12% to 22% as-fed basis) in gestating sow diets compared to the control group improves the litter born alive by 0.49 pigs per litter. However, based on the present review, questions remain regarding the benefits of fibers in gestating sow diets. Further research is warranted to clarify the mode of action of fibers and the association with subsequent reproductive performance in gestating sows.
Collapse
Affiliation(s)
- Hyunwoong Jo
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| | - Beob Gyun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
6
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
7
|
Xu B, Qin W, Chen Y, Tang Y, Zhou S, Huang J, Ma L, Yan X. Multi-omics analysis reveals gut microbiota-ovary axis contributed to the follicular development difference between Meishan and Landrace × Yorkshire sows. J Anim Sci Biotechnol 2023; 14:68. [PMID: 37122038 PMCID: PMC10150527 DOI: 10.1186/s40104-023-00865-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND The mechanism by which Meishan (MS) sows are superior to white crossbred sows in ovarian follicle development remains unclear. Given gut microbiota could regulate female ovarian function and reproductive capacity, this study aimed to determine the role of gut microbiota-ovary axis on follicular development in sows. METHODS We compared the ovarian follicular development, gut microbiota, plasma metabolome, and follicular fluid metabolome between MS and Landrace × Yorkshire (L × Y) sows. A H2O2-induced cell apoptosis model was used to evaluate the effects of multi-omics identified metabolites on the apoptosis of porcine ovarian granulosa cells in vitro. RESULTS Compared with L × Y sows, MS sows have greater ovary weight and improved follicular development, including the greater counts of large follicles of diameter ≥ 5 mm, secondary follicles, and antral follicles, but lesser atretic follicles. The ovarian granulosa cells in MS sows had alleviated apoptosis, which was indicated by the increased BCL-2, decreased caspases-3, and decreased cleaved caspases-3 than in L × Y sows. The ovarian follicular fluid of MS sows had higher concentrations of estradiol, progesterone, follicle-stimulating hormone, luteinizing hormone, and insulin like growth factor 1 than L × Y sows. Gut microbiota of MS sows formed a distinct cluster and had improved alpha diversity, including increased Shannon and decreased Simpson than those of L × Y sows. Corresponding to the enhanced function of carbohydrate metabolism and elevated short-chain fatty acids (SCFAs) in feces, the differential metabolites in plasma between MS and L × Y sows are also mainly enriched in pathways of fatty acid metabolism. There were significant correlations among SCFAs with follicular development, ovarian granulosa cells apoptosis, and follicular fluid hormones, respectively. Noteworthily, compared with L × Y sows, MS sows had higher follicular fluid SCFAs concentrations which could ameliorate H2O2-induced porcine granulosa cells apoptosis in vitro. CONCLUSION MS sows have more secondary and antral follicles, but fewer atretic follicles and apoptotic ovarian granulosa cells, as well as harbored a distinctive gut microbiota than L × Y sows. Gut microbiota may participate in regulating ovarian follicular development via SCFAs affecting granulosa cells apoptosis in sows.
Collapse
Affiliation(s)
- Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Wenxia Qin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Yuwen Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Yimei Tang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Shuyi Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Juncheng Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Yao W, Yu X, Zhou Y, Han Y, Li S, Yin X, Huang X, Huang F. Effects of different processing techniques of broken rice on processing quality of pellet feed, nutrient digestibility, and gut microbiota of weaned piglets. J Anim Sci 2023; 101:skad158. [PMID: 37184888 PMCID: PMC10237224 DOI: 10.1093/jas/skad158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023] Open
Abstract
The present study was conducted to assess the effect of different processing techniques of broken rice on processing quality of pellet feed, growth performance, nutrient digestibility, blood biochemical parameters, and fecal microbiota of weaned piglets. A total of 400 crossbred piglets (Duroc × Landrace × Yorkshire) with a mean initial body weight (BW) of 7.24 ± 0.52 kg were used in a 28-d experiment. Piglets were randomly distributed to one of 4 treatment and 10 replicate pens per treatment, with 10 piglets per pen. The dietary treatments were as follows: CON, corn as the main cereal type in the dietary; BR, 70% of the corn replaced by broken rice; ETBR, 70% of the corn replaced by extruded broken rice; EPBR, 70% of the corn replaced by expanded broken rice. Extruded broken rice and expanded broken rice supplementation significantly (P < 0.05) increased hardness, pellet durability index, crispness, and starch gelatinization degree. Extruded broken rice and expanded broken rice generated a higher (P < 0.05) average daily feed intake, increased (P < 0.05) average daily gain, decreased (P < 0.05) feed conversion ratio, and lowered (P < 0.05) the diarrhea rate. Piglets fed extruded broken rice displayed high apparent total tract digestibility levels of dry matter (P < 0.05), gross energy (P < 0.05), crude protein (P < 0.05), and organic matter (P < 0.05). In addition, extruded broken rice and expanded broken rice supplementation had increased Lactobacillus and Bifidobacterium levels in gut, whereas a lower abundance of the potential pathogens Clostridium_sensu_strictio_1 and Streptococcus was observed. Dietary supplementation of extruded broken rice and expanded broken rice failed to show significant effects on blood biochemical parameters. Combined, 70% corn substituted with broken rice failed to show significant effects. Collectively, extruded broken rice and expanded broken rice supplementation had positively enhanced the pellet quality, growth performance, nutrient digestibility, and gut microbiota of weaned piglets.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinhong Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Yan Zhou
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Yanxu Han
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Shimin Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinyi Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinlei Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| |
Collapse
|
9
|
Hirata M, Matsuoka M, Hashimoto T, Oura T, Ohnuki Y, Yoshida C, Minemura A, Miura D, Oka K, Takahashi M, Morimatsu F. Supplemental Clostridium butyricum MIYAIRI 588 Affects Intestinal Bacterial Composition of Finishing Pigs. Microbes Environ 2022; 37. [PMID: 36155363 PMCID: PMC9530721 DOI: 10.1264/jsme2.me22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal gastrointestinal tracts are populated by highly diverse and complex microbiotas. The gut microbiota influences the bioavailability of dietary components and is closely associated with physiological processes in the host. Clostridium butyricum reportedly improves growth performance and affects the gut microbiota and immune functions in post-weaning piglets. However, the effects of C. butyricum on finishing pigs remain unclear. Therefore, we herein investigated the effects of C. butyricum MIYAIRI 588 (CBM588) on the gut microbiota of finishing pigs. 16S rRNA gene sequencing was performed using fecal samples and ileal, cecal, and colonic contents collected after slaughtering. The α-diversity of the small intestinal microbiota was lower than that of the large intestinal microbiota, whereas β-diversity showed different patterns depending on sample collection sites. The administration of CBM588 did not significantly affect the α- or β-diversity of the microbiotas of fecal and intestinal content samples regardless of the collection site. However, a linear discriminant ana-lysis Effect Size revealed that the relative abundance of Lactobacillaceae at the family level, Bifidobacterium at the order level, and Lactobacillus ruminis and Bifidobacterium pseudolongum at the species level were higher in the fecal samples and cecal and colonic contents of the treatment group than in those of the control group. Therefore, the administration of CBM588 to finishing pigs affected the composition of the gut microbiota and increased the abundance of bacteria that are beneficial to the host. These results provide important insights into the effects of probiotic administration on relatively stable gut microbial ecosystems.
Collapse
Affiliation(s)
- Maki Hirata
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| | - Miki Matsuoka
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Takamichi Oura
- Faculty of Bioscience and Bioindustry, Tokushima University
| | - Yo Ohnuki
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Chika Yoshida
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Daiki Miura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Fumiki Morimatsu
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| |
Collapse
|
10
|
Zhang M, Liang G, Zhang X, Lu X, Li S, Wang X, Yang W, Yuan Y, Jiao P. The gas production, ruminal fermentation parameters, and microbiota in response to Clostridium butyricum supplementation on in vitro varying with media pH levels. Front Microbiol 2022; 13:960623. [PMID: 36212861 PMCID: PMC9532509 DOI: 10.3389/fmicb.2022.960623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to investigate the gas production (GP), dry matter disappearance (DMD), fermentation parameters, and rumen microbiota in response to Clostridium butyricum (CB) supplementation in batch culture using a high forage substrate. The doses of CB were supplemented at 0 (Control), 0.5 × 106, 1 × 106, and 2 × 106 CFU/bottle, respectively, at either media pH 6.0 or pH 6.6. The 16S rRNA gene sequencing was used to detect the microbiota of fermentation culture in control and 1 × 106 CFU/bottle after 24 h of incubation. The results showed that the GP (p < 0.001), DMD (p = 0.008), total volatile fatty acid (VFA) concentration (p < 0.001), acetate to propionate ratio (p < 0.001), and NH3-N concentration (p < 0.001) were greater at media pH 6.6 than pH 6.0. Furthermore, the linearly increased DMD (pH 6.0, p = 0.002; pH 6.6, p < 0.001) and quadratically increased butyrate proportion (pH 6.0, p = 0.076; pH 6.6, p < 0.053) and NH3-N concentration (pH 6.0, p = 0.003; pH 6.6, p = 0.014) were observed with increasing doses of CB. The Alpha diversity indexes of OTU number and Chao1 were higher (p = 0.045) at media pH 6.6 than pH 6.0, but they were not affected by CB supplementation. The PCoA analysis (unweighted uniFrac) demonstrated that the clustering of the bacterial microbiota of control and CB were distinctly separated from each other at media pH 6.0. At the phylum level, the abundance of Bacteroidota (p < 0.001) decreased, whereas that of Firmicutes (p = 0.026) increased when the media pH was elevated from 6.0 to 6.6. Supplementation of CB increased relative abundances of Rikenellaceae_RC9_gut_group (p = 0.002), Christensenellaceae_R-7_group (p < 0.001), and NK4A214_group (p = 0.002) at genus level. Interactions between media pH and CB addition were observed for bacteria at both phylum and genus levels. These results indicated that increasing the media pH level and CB supplementation increased in vitro rumen digestibility, and altered the ruminal fermentation pattern (by media pH) and microbiota.
Collapse
Affiliation(s)
- Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Gege Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinlong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaotan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Siyao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xu Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Yuan Yuan
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou, China
- Yuan Yuan,
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Peixin Jiao,
| |
Collapse
|
11
|
Li Q, Yang S, Chen F, Guan W, Zhang S. Nutritional strategies to alleviate oxidative stress in sows. ANIMAL NUTRITION 2022; 9:60-73. [PMID: 35949982 PMCID: PMC9344312 DOI: 10.1016/j.aninu.2021.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
The performance of high-yielding sows is directly related to the productivity of pig farming. Fetal development mainly occurs during the last month of pregnancy, and the aggressive metabolic burden of sows during this stage eventually leads to systemic oxidative stress. When affected by oxidative stress, sows exhibit adverse symptoms such as reduced feed intake, hindered fetal development, and even abortion. In addition, milk synthesis during the lactation period causes a severe metabolic burden. The biological response to oxidative stress during this period is associated with a decrease in milk production, which further affects the growth of piglets. Understanding the nutritional strategies to alleviate oxidative stress in sows is crucial to maintain their reproduction and lactation performance. Recently, advances have been made in the field of nutrition to relieve oxidative stress in sows during late pregnancy and lactation. This review highlights the nutritional strategies to relieve oxidative stress in sows reported within the last 20 years.
Collapse
|
12
|
Lee JC, Chiu CW, Tsai PJ, Lee CC, Huang IH, Ko WC, Hung YP. Clostridium butyricum therapy for mild-moderate Clostridioides difficile infection and the impact of diabetes mellitus. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:37-44. [PMID: 35433161 PMCID: PMC8970652 DOI: 10.12938/bmfh.2021-049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/19/2021] [Indexed: 01/26/2023]
Abstract
The therapeutic effect of Clostridium butyricum for adults with
Clostridioides difficile infection (CDI) was investigated. A
retrospective study was conducted in medical wards of Tainan Hospital, Ministry of Health
and Welfare, between January 2013 and April 2020. The disease severity of CDI was scored
based on the Clinical Practice Guidelines of the IDSA/SHEA. Treatment success was defined
as the resolution of diarrhea within six days of a therapeutic intervention without the
need to modify the therapeutic regimen. In total, 241 patients developed CDI during
hospitalization in the study period. The treatment success rates for the 99 patients with
mild-moderate CDI among them were as follows: metronidazole, 69.4%; C.
butyricum, 68.2%; metronidazole plus C. butyricum, 66.7%; and
oral vancomycin, 66.7% (p=1.00). Patients with treatment success were less likely to have
diabetes mellitus than those with treatment failure (38.2% vs. 61.3%, p=0.05). Patients
treated with C. butyricum alone or in combination with metronidazole had
shorter durations of diarrhea than those treated with metronidazole alone (3.1 ± 2.0 days
or 3.5 ± 2.4 days vs. 4.2 ± 3.5 days; p=0.43 or 0.71), although the differences were not
statistically significant. In conclusion, the treatment success rate of C.
butyricum alone or in combination with metronidazole for patients with CDI was
non inferior to that of metronidazole alone. The presence of diabetes mellitus in affected
individuals is a risk factor for treatment failure.
Collapse
Affiliation(s)
- Jen-Chieh Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, North Dist., Tainan 704, Taiwan
| | - Chun-Wei Chiu
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, No. 125, Jhongshan Rd., West Central Dist., Tainan 70043, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Medical College, No.1, University Road, Tainan 701, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, No.138, Sheng Li Road, North Dist., Tainan 704, Taiwan
| | - Ching-Chi Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, North Dist., Tainan 704, Taiwan.,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan 701, Taiwan
| | - I-Hsiu Huang
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 W. 17th Street Tulsa, OK 74107, USA
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, North Dist., Tainan 704, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, North Dist., Tainan 704, Taiwan.,Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, No. 125, Jhongshan Rd., West Central Dist., Tainan 70043, Taiwan
| |
Collapse
|
13
|
Zhuo Y, Huang Y, He J, Hua L, Xu S, Li J, Che L, Lin Y, Feng B, Wu D. Effects of Corn and Broken Rice Extrusion on the Feed Intake, Nutrient Digestibility, and Gut Microbiota of Weaned Piglets. Animals (Basel) 2022; 12:ani12070818. [PMID: 35405808 PMCID: PMC8997032 DOI: 10.3390/ani12070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Extruded cereals are largely used in newly weaned piglet diets to increase nutrient digestibility and palatability. Our findings showed that corn and broken rice extrusion diets generated negative effects on average daily feed intake (−63.5 g/day, p = 0.054) and average daily gain (−60.6 g/d, p = 0.015) in weaned piglets. Decreased feed intake was associated with increased plasma levels of the gut-derived hormones, glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), which may have been attributed to increased microbiota pathogen abundance, including Sarcina, Clostridium_sensu_strictio_1, and Terrisporobacter, and decreased short-chain fatty acid-producing microbiota, such as Lactobaillaceae and Bifidobateriaceae. Our results showed that extruded cereals should be used cautiously when formulating diets for newly weaned piglets. Abstract In this study, we investigated the effects of corn and rice extrusion diets on feed intake, nutrient digestibility, and gut microbiota in weaned piglets. Animals were divided into four dietary groups and fed a controlled diet containing (1) 62.17% corn (CORN), 15% soybean, 10% extruded full-fat soybean, and 6% fishmeal (2) half the corn replaced by extruded corn (ECORN), (3) broken rice (RICE), and (4) extruded broken rice (ERICE) for 28 days. Rice supplementation increased dry matter total tract digestibility and gross energy. Extruded cereals generated a lower average daily feed intake (ADFI) at 15–28 and 1–28 days, decreased average daily growth (ADG) at 15–28 and 1–28 days, and a lowered body weight (BW) on day 28, regardless of cereal type. Dietary extruded cereals increased the appetite-regulating hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Piglets fed extruded cereals displayed low short-chain fatty acid (SCFA) levels in plasma and low Lactobaillaceae and Bifidobateriaceae levels in feces, whereas a higher abundance of the potential pathogens Sarcina, Clostridium_sensu_strictio_1 and Terrisporobacter was observed. Piglets fed extruded cereals displayed significantly lower gas and SCFA levels during in vitro fermentation. Combined, 50% corn substituted with extruded corn or broken rice decreased piglet growth performance, possibly by altering their microbiota.
Collapse
|
14
|
Hashem NM, Gonzalez-Bulnes A. The Use of Probiotics for Management and Improvement of Reproductive Eubiosis and Function. Nutrients 2022; 14:nu14040902. [PMID: 35215551 PMCID: PMC8878190 DOI: 10.3390/nu14040902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022] Open
Abstract
Reproductive tract dysbiosis, due to the action of pathogens and/or unhealthy lifestyle, has been related to many reproductive diseases and disorders in mammalian species. Classically, such a problem has been confronted by the administration of antibiotics. Despite their effectiveness for controlling disease, treatments with antibiotics may negatively affect the fertility of males and females and, mainly, may induce antibiotic resistance. Accordingly, safer alternatives for maintaining reproductive system eubiosis, such as probiotics, are required. The present review summarizes the current knowledge on the biodiversity of the microbiota at the reproductive tract, possible changes in the case of dysbiosis, and their relationships with adequate reproductive health and functioning in both females and males. Afterwards, mechanisms of action and benefits of different probiotics are weighed since the biological activities of probiotics may provide a promising alternative to antibiotics for maintaining and restoring reproductive eubiosis and function. However, at present, it is still necessary for further research to focus on: (a) identifying mechanisms by which probiotics can affect reproductive processes; (b) the safety of probiotics to the host, specifically when consumed during sensitive reproductive windows such as pregnancy; and (c) the hazards instructions and regulatory rules required for marketing these biological-based therapies with sufficient safety. Thus, in this review, to draw a comprehensive overview with a relatively low number of clinical studies in this field, we showed the findings of studies performed either on human or animal models. This review strategy may help provide concrete facts on the eligible probiotic strains, probiotics colonization and transfer route, and prophylactic and/or therapeutic effects of different probiotic strains.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Correspondence: (N.M.H.); (A.G.-B.)
| |
Collapse
|
15
|
Yu M, Meng T, He W, Huang H, Liu C, Fu X, He J, Yin Y, Xiao D. Dietary Chito-oligosaccharides Improve Intestinal Immunity via Regulating Microbiota and Th17/Treg Balance-Related Immune Signaling in Piglets Challenged by Enterotoxigenic E. coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15195-15207. [PMID: 34881888 DOI: 10.1021/acs.jafc.1c06029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study was conducted to investigate how chito-oligosaccharides (COSs) affect the growth performance and immune stress response and to further explain their mechanisms. A total of 32 boars that were 28 days old and three-way weaned were randomly allotted to four equal groups [CON (basal diet) group, enterotoxigenic Escherichia coli (ETEC) group, COS group, and COS*ETEC group]. The results showed that COS partially reversed the negative changes in the average daily gain and average daily feed intake caused by the ETEC challenge and thereby alleviated the increase in the feed conversion ratio. Dietary COS increased the villus length as compared with the CON group and improved the ileal morphological structure. Additionally, it increased the bacterial diversity and Bacteroidetes abundance and lowered the Firmicutes abundance and Firmicutes-to-Bacteroidetes ratio at the phylum level. COS treatment lowered the abundance of Lactobacillus, Streptococcus, and Anarovovrio in the intestines of piglets, while it increased Muribaculaceae_unclassified and Prevotella at the genus level. COS had a significant inhibitory effect on the increase in the relative expression abundance of STAT3 mRNA caused by ETEC. The IL-10 and FOXP3 mRNAs were found to be significantly lower in the COS, ETEC, and COS*ETEC groups as compared to the CON group. These results demonstrate that COS could be beneficial for improving the growth performance and attenuating ETEC-challenged intestinal inflammation via regulating microbiota and Th17/Treg balance-related immune signaling pathways.
Collapse
Affiliation(s)
- Manrong Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wenxiang He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hui Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoqin Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410128, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
16
|
Li Y, Wang Y, Lv J, Dou X, Zhang Y. Effects of Dietary Supplementation With Clostridium butyricum on the Amelioration of Growth Performance, Rumen Fermentation, and Rumen Microbiota of Holstein Heifers. Front Nutr 2021; 8:763700. [PMID: 34859032 PMCID: PMC8631910 DOI: 10.3389/fnut.2021.763700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
In China, the use of antibiotics growth promoters as feed additives has been banned. The goal of raising dairy heifers is to gain a relatively high body weight on a high-fiber diet at first mating or calving, thus increasing economic benefits. The objective of this experiment was to explore the effects of supplemental Clostridium butyricum (C. butyricum) on growth performance, rumen fermentation and microbiota, and blood parameters in Holstein heifers. Twenty Holstein heifers [mean ± standard deviation (SD); age = 182 ± 4.20 d, body weight = 197.53 ± 5.94 kg, dry matter intake (DMI) = 6.10 ± 0.38 kg] were randomly assigned to one of two diets group for a 42-day feeding period: (1) basal diet (an untreated control group, i.e., the CON group) or (2) basal diet plus daily 2 × 108 (colony-forming unit, CFU) of C. butyricum per kg of DMI per heifer (the CB group). The results demonstrated that C. butyricum supplementation increased the average daily gain from d 21 to 42 and DMI compared to the control group. Supplementation with C. butyricum significantly decreased the molar proportion of acetate and the acetate to propionate ratio but increased the molar proportion of butyrate and propionate. Compared with the control group, the relative abundance of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminobacter amylophilus, Ruminococcus flavefaciens, and Streptococcus bovis increased during the trial period in the CB group. However, C. butyricum had no significant effect on the blood parameters in Holstein heifers. In conclusion, these results show that feeding C. butyricum can improve growth performance and rumen fermentation without any negative impact on blood parameters in Holstein heifers.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yiqiang Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Jingyi Lv
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Xiujing Dou
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yonggen Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| |
Collapse
|
17
|
Zhang Q, Ahn JM, Kim IH. Micelle silymarin supplementation to sows' diet from day 109 of gestation to entire lactation period enhances reproductive performance and affects serum hormones and metabolites. J Anim Sci 2021; 99:6444280. [PMID: 34850001 DOI: 10.1093/jas/skab354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to explore the influences of varying doses of micelle silymarin (0%, 0.05%, 0.1%, and 0.2%) supplementation on sows' feed intake, milk yields, serum hormones, and litter growth using 40 multiparous sows (Landrace × Yorkshire, parity from 3 to 5) from the 109th prenatal day to the 21st postnatal day. Each treatment included 10 sows and each sow was used as an experimental unit. On weaning day, litter weight and litter weight gain were linearly improved (P < 0.01, both), corresponding to the increasing dose of silymarin micelle in the diet. Also, litter weight, litter weight gain, and average daily gain (ADG) of piglets born to treated sows exceeded (P < 0.05) those of offspring from the control sows (0% micelle silymarin). Feed intake in week 1, week 2, and the entire lactation period was increased (linear, P < 0.01) as micelle silymarin dose increased. Body weight (BW) loss of sows during lactation was linearly reduced (P = 0.003) with the increasing amounts of micelle silymarin. Average daily milk yields during lactation were also linearly increased (P = 0.002) in treated sows, exceeding (P = 0.046) that of control sows. Also, uniform increases were observed (P = 0.037) in fat content in milk produced by treated sows on day 14 of lactation. Epinephrine concentrations and aspartate aminotransferase (AST) activity in sow serum on day 21 postpartum were linearly declined (P = 0.010) as micelle silymarin dose increased, and were both declined (P < 0.05) in treated sows compared with the control. In addition, treated sows' serum had higher activity of superoxide dismutase (SOD) at parturition and glutathione peroxidase (GSH-Px), lower oxidized glutathione (GSSG) concentrations, and GSSG/GSH (glutathione) ratio (all, P < 0.01) on day 21 of lactation. Moreover, offspring from micelle silymarin-treated sows tended to (0.05 < P <0.1) have higher serum catalase (CAT) activity and total antioxidant capacity (T-AOC) concentrations. Taken together, the results showed that sows fed increasing levels of micelle silymarin from the 109th prenatal day to the 21st postnatal day had an incremental dose-dependent effect on higher feed intake, diminished BW loss, greater milk yields, and greater litter weight at weaning, and 0.2% of micelle silymarin could be optimal to achieve the better effect.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - Je Min Ahn
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
18
|
Clostridium butyricum Protects IPEC-J2 Cells from ETEC K88-Induced Oxidative Damage by Activating the Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4464002. [PMID: 34336091 PMCID: PMC8321755 DOI: 10.1155/2021/4464002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Clostridium butyricum (CB) is a naturally occurring probiotic compound that can alleviate the oxidative damage induced by enterotoxigenic Escherichia coli K88 (ETEC K88) in porcine intestinal epithelial (IPEC-J2) cells. In this study, we investigate the molecular mechanism underlying this effect. Based on cell viability, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) assessments, the optimal concentration of ETEC K88 was determined to be 1 × 103 cfu/mL. Viable bacteria counts in cells pretreated with CB and then infected with ETEC K88 show that CB can adhere to IPEC-J2 cells and that optimal adhesion is achieved at the multiple infection index (MOI) of 50 at 3 h of pretreatment. The results of qPCR indicate that although ETEC significantly decreases the expression levels of antioxidant enzymes regulated by NF-E2-related factor 2 (Nrf2) compared to the control group, CB reverses this effect. To confirm that Nrf2 is directly involved in the mechanism by which CB alleviates oxidative stress, siRNA was used to silence the expression of Nrf2 gene in IPEC-J2 cells. Compared to the NC+ETEC and siRNA+ETEC groups, the expressions of SOD1, SOD2, GPX1, and GPX2 in the NC+CB+ETEC and siRNA+CB+ETEC groups are significantly increased at 12 h and 24 h. This shows that CB can reduce ETEC K88-induced oxidative damage in IPEC-J2 cells by activating the expression of antioxidant enzymes implicated in the Kelch-like ECH-associated protein-1- (Keap1-) Nrf2/antioxidant response element (ARE) signaling pathway.
Collapse
|
19
|
Yang M, Mao Z, Jiang X, Cozannet P, Che L, Xu S, Lin Y, Fang Z, Feng B, Wang J, Li J, Wu D, Zhuo Y. Dietary fiber in a low-protein diet during gestation affects nitrogen excretion in primiparous gilts, with possible influences from the gut microbiota. J Anim Sci 2021; 99:6237918. [PMID: 33871635 DOI: 10.1093/jas/skab121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
We investigated the effects of dietary fiber (DF) supplementation in normal or low crude protein (CP) diets on reproductive performance and nitrogen (N) utilization in primiparous gilts. In total, 77 Landrace × Yorkshire pregnant gilts were randomly allocated to four dietary treatments in a 2 × 2 factorial design. The groups comprised 1) equal intake of normal CP (12.82% and 0.61% total lysine), 2) low CP (LP) (10.53% and 0.61% total lysine), and 3) with or 4) without DF supplementation (cellulose, inulin, and pectin in a 34:10:1 ratio). A low-protein diet during gestation significantly reduced daily weight gain from days 91 to 110 of pregnancy (-162.5 g/d, P = 0.004). From N balance trials conducted at days 35 to 38, 65 to 68, and 95 to 98 of pregnancy, DF addition increased fecal N excretion at days 65 to 68 (+24.1%) and 95 to 98 (+13.8%) of pregnancy (P < 0.05) but reduced urinary N excretion (P < 0.05), resulting in greater N retention at each gestational stage. DF increased fecal microbial protein levels and excretion during gestation. An LP diet also reduced urinary N excretion at different gestational stages. An in vitro fermentation trial on culture media with nonprotein N urea and ammonium bicarbonate (NH4HCO3) as the only N sources revealed that microbiota derived from feces of gestating gilts fed the high DF diet exhibited a greater capacity to convert nonprotein N to microbial protein. Microbial fecal diversity, as measured by 16S rRNA sequencing, revealed significant changes from DF but not CP diets. Gilts fed an LP diet had a higher number of stillbirths (+0.83 per litter, P = 0.046) and a lower piglet birth weight (1.52 vs. 1.37 kg, P = 0.006), regardless of DF levels. Collectively, DF supplementation to gestation diets shifted N excretion from urine to feces in the form of microbial protein, suggesting that the microbiota had a putative role in controlling N utilization from DF. Additionally, a low-protein diet during gestation negatively affected the litter performance of gilts.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China.,Chengdu Agricultural College, Wenjiang, Chengdu 611130, People's Republic of China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | | | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| |
Collapse
|
20
|
Huang PF, Mou Q, Yang Y, Li JM, Xu ML, Huang J, Li JZ, Yang HS, Liang XX, Yin YL. Effects of supplementing sow diets during late gestation with Pennisetum purpureum on antioxidant indices, immune parameters and faecal microbiota. Vet Med Sci 2021; 7:1347-1358. [PMID: 33620158 PMCID: PMC8294372 DOI: 10.1002/vms3.450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/07/2020] [Accepted: 01/23/2021] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to investigate the effects of adding Pennisetum purpureum (P. purpureum, also known as Napier grass or elephant grass) to the diets of late gestation on the antioxidant indexes, immune indexes and faecal microbiota of sows. At the 90 days of gestation, 300 healthy sows were randomly divided into three groups, and they received the basic commercial diet or added 5% P. purpureum and 10% P. purpureum, respectively. The experiment started from 90 days of gestation to parturition. The results showed that the total antioxidant capacity, immunoglobulins and serum equol concentrations of sows on 100 days of gestation and at parturition increased linearly (p < .05) with the increase of the content of P. purpureum in the gestation diet. The 5% P. purpureum increased the relative abundance of Bacteroidetes (p = .027) and Actinobacteria (p < .001) at phylum level, Coriobacteriaceae (p < .001) at family level and Prevotellaceae_UCG_001 (p = .004) at genus level, and decreased the relative abundance of Escherichia_Shigella (p < .001) at genus level. In summary, this study shows that the additive of P. purpureum can increase the concentration of serum equol, improve the antioxidant capacity and immune function of sow in late gestation. In addition, the additive of 5% P. purpureum in the diet might change the composition of intestinal microbiota of sows, particularly the relative abundance of Coriobacteriaceae (p < .001) increased.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Qi Mou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Ying Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Jia-Ming Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Ming-Lang Xu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Jian-Zhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Huan-Sheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Xiao-Xiao Liang
- Henan Ground Biological Science & Technology Co., Ltd, Zhengzhou, Hena, P. R. China
| | - Yu-Long Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China.,Henan Ground Biological Science & Technology Co., Ltd, Zhengzhou, Hena, P. R. China
| |
Collapse
|
21
|
Effects of Dietary Supplementation with Clostridium butyricum on Growth Performance, Serum Immunity, Intestinal Morphology, and Microbiota as an Antibiotic Alternative in Weaned Piglets. Animals (Basel) 2020; 10:ani10122287. [PMID: 33287332 PMCID: PMC7761722 DOI: 10.3390/ani10122287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of Clostridium butyricum (C. butyricum) use on growth performance, serum immunity, intestinal morphology, and microbiota as an antibiotic alternative in weaned piglets. Over the course of 28 days, 120 piglets were allocated to four treatments with six replicates of five piglets each. The treatments were: CON (basal diet); AGP (basal diet supplemented with 0.075 g/kg chlortetracycline, 0.055 g/kg kitasamycin, and 0.01 g/kg virginiamycin); CBN (basal diet supplemented with normal dosage of 2.5 × 108 CFU/kg C. butyricum); and CBH (basal diet supplemented with high dosage of 2.5 × 109 CFU/kg C. butyricum). Body weight (BW) and feed consumption were recorded at the beginning and on days 14 and 28 of the experiment, and representative feed samples and fresh feces were collected from each pen between days 26 and 28. Average fecal score of diarrhea was visually assessed each morning during the experimental period. On the morning of days 14 and 28, blood samples were collected to prepare serum for immune and antioxidant parameters measurement. One male piglet close to the average group BW was selected from each replicate and was slaughtered on day 21 of the experiment. Intestinal crypt villi, and colonic microbiota and its metabolites short-chain fatty acids were measured. Compared to the CON group, the CBN and AGP groups significantly decreased (p < 0.05) the ratio of feed to weight gain by 8.86% and 8.37% between days 1 and 14, 3.96% and 13.36% between days 15 and 28, 5.47% and 11.44% between days 1 and 28. Dietary treatment with C. butyricum and AGPs significantly decreased the average fecal score during the experimental period (p < 0.05). The apparent total tract digestibility of dry matter, organic matter, and total carbohydrates in the CBH group were higher respectively at 3.27%, 2.90%, and 2.97%, than those in the CON or AGP groups (p < 0.05). Compared to the CON group, the CBH group significantly increased short-chain fatty acids in colon and villus height in the jejunum (p < 0.05). The CBN group had higher serum levels of immunoglobulins, interleukin 2 (IL-2), and glutathione peroxidase (GSH-PX) activity, but lower serum levels of IL-1β and IL-6, and a lower aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transpeptidase (γ-GT) activity (p < 0.05), while compared to the CON group. Dietary treatment with C. butyricum significantly increased the relative abundance of Streptococcus and Bifidobacterium (p < 0.05). In summary, diet with C. butyricum increased the growth performance and benefited the health of weaned piglets.
Collapse
|
22
|
Lu J, Yao J, Xu Q, Zheng Y, Dong X. Clostridium butyricum relieves diarrhea by enhancing digestive function, maintaining intestinal barrier integrity, and relieving intestinal inflammation in weaned piglets. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Zhuo Y, Cao M, Li Y, Tang L, Li W, Jiang X, Xiao W, Liu S, Jiang X, Fang Z, Che L, Xu S, Feng B, Li J, Lin Y, De W. Soybean bioactive peptides supplementation during late gestation and lactation affect the reproductive performance, free amino acid composition in plasma and milk of sows. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Zhuo Y, Feng B, Xuan Y, Che L, Fang Z, Lin Y, Xu S, Li J, Feng B, Wu D. Inclusion of purified dietary fiber during gestation improved the reproductive performance of sows. J Anim Sci Biotechnol 2020; 11:47. [PMID: 32426131 PMCID: PMC7216585 DOI: 10.1186/s40104-020-00450-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background This study aimed to investigate the impacts of guar gum and cellulose as the source of dietary fiber during gestation on the reproductive performance of sows. Methods A total of 210 sows (parities 3–6) were randomly allocated into six diets (n = 35) throughout gestation to feed graded levels of dietary fiber (DF), including a corn-soybean meal-based control diet with no wheat bran inclusion (CON, 12.5% DF), a wheat bran-rich diet (DF1, 17.4% DF), and another 4 diets (DF2, 17.7% DF; DF3, 18.1% DF; DF4, 18.4% DF; DF5, 18.8% DF) in which wheat bran were equally substituted by 1%, 2%, 3% and 4% purified FIBER MIX (guar gum and cellulose, 1:4). All sows received similar DE and other nutrients throughout gestation. Results DF treatment during gestation resulted in normal fecal score (1 to 5 with 1 = dry and 5 = watery) in sows compared with those received the CON diet (P < 0.05). The number of total born piglets had a tendency to be affected by dietary treatment (P = 0.07), and correlation analysis revealed a linear response of total born to dietary fiber levels during gestation (P < 0.01). Sows received the DF2, DF3, and DF5 diets during gestation had a greater ADFI during lactation compared with those in the CON group (P < 0.05) without affecting the daily body weight gain of suckling piglets. Gut microbiota compositions were dramatically changed by the gestation stage and some of those were changed by DF inclusion. Fecal acetate, propionate, and butyrate of sows were markedly increased in late gestation, and butyrate contents in feces of gestating sows were significantly affected by DF levels (P < 0.01). Serum concentrations of pro-inflammatory TNF-α were decreased and anti-inflammatory IL-10 was increased on day 30 of gestation by DF levels (P < 0.05). Conclusions In summary, increasing dietary fiber levels by guar gum and cellulose during gestation improved the reproductive performance of sows, which might be related to changes in immunity and gut microbiota of sows.
Collapse
Affiliation(s)
- Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Bo Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Yuedong Xuan
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Bing Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| |
Collapse
|
25
|
Shao Y, Zhou J, Xiong X, Zou L, Kong X, Tan B, Yin Y. Differences in Gut Microbial and Serum Biochemical Indices Between Sows With Different Productive Capacities During Perinatal Period. Front Microbiol 2020; 10:3047. [PMID: 32010103 PMCID: PMC6978668 DOI: 10.3389/fmicb.2019.03047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022] Open
Abstract
Maternal gut microflora changes dramatically during perinatal period and plays a vital role in animal health and reproductive performance. However, little is known about the microbial differences between sows with different productive capacities during perinatal period. Hence, this study explored fecal microbial diversity, composition, metabolic functions, and phenotypes differences between high productive capacity (HPC, litter size ≥ 15) and low productive capacity (LPC, litter size ≤ 7) sows during late pregnancy (LP, the third day before due date) and early stage after parturition (EAP, the third day after parturition) as well as serum biochemical indices differences after parturition. Results showed that HPC sows had lower microbial richness at LP stage and higher microbial diversity at EAP stage than LPC sows. Several genera belonging to the Prevotellaceae family exhibited higher abundance, while some genera belonging to the Ruminococcaceae family exhibited lower abundance in HPC sows compared to LPC sows at LP stage. Moreover, the relative abundance of Eubacterium_coprostanoligenes_group and Ruminococcaceae_UCG-014 in HPC sows was significantly higher than that in LPC sows at EAP stage. The predicted metabolic functions related to Lipopolysaccharide biosynthesis were significantly higher in HPC sows at LP stage. Further, HPC sows had significantly higher blood urea nitrogen (BUN) and high-density lipoprotein cholesterol (HDL-C) levels after parturition, and there were strong correlations between BUN level and the relative abundance of genera belonging to the Ruminococcaceae families. These results indicated that the HPC sows may experience greater inflammation than LPC sows at LP stage. Inflammation environment might impact health but promote parturition. The microbial differences at EAP stage might be beneficial to hemostasis and anti-inflammation, which might contribute to postpartum recovery in HPC sow.
Collapse
Affiliation(s)
- Yirui Shao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Xiong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lijun Zou
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bie Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|