1
|
O’Reilly K, Carstens GE, Johnson JR, Deeb N, Ross P. Association of genomically enhanced residual feed intake with performance, feed efficiency, feeding behavior, gas flux, and nutrient digestibility in growing Holstein heifers. J Anim Sci 2024; 102:skae289. [PMID: 39360624 PMCID: PMC11525487 DOI: 10.1093/jas/skae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024] Open
Abstract
Residual feed intake (RFI), a metric of feed efficiency, is moderately heritable and independent of body size and productivity, making it an ideal trait for investigation as a selection criterion to improve the feed efficiency of growing cattle. The objective of this study was to examine the differences in performance, feed efficiency, feeding behavior, gas flux, and nutrient digestibility in Holstein heifers with divergent genomically enhanced breeding values for RFI (RFIg). Holstein heifers (n = 55; BW = 352 ± 64 kg) with low (n = 29) or high (n = 26) RFIg were selected from a contemporary group of 453 commercial Holstein heifers. Heifers were rotated between 1 of 2 pens, each equipped with 4 electronic feed bunks and 1 pen with a GreenFeed emissions monitoring (GEM) system. Individual dry matter intake (DMI) and feeding behavior data were collected for 84-d. Body weight (BW) was measured weekly and spot fecal samples were collected at weighing. Phenotypic RFI (RFIp) was calculated as the residual from the regression of DMI on average daily gain (ADG) and mid-test metabolic BW (BW0.75). A mixed model including the fixed effect of RFIg classification and the random effect of group was used to evaluate the effect of RFIg classification on response variables. There were no differences (P > 0.05) in BW and ADG for heifers with divergent RFIg; however, low RFIg heifers consumed 7.5% less (P < 0.05) feed per day. Consequently, low RFIg heifers exhibited a more favorable (P < 0.05) RFIp compared to high RFIg heifers (-0.196 vs 0.222 kg/d, respectively). Low RFIg heifers had 8.7% fewer (P < 0.05) bunk visit events per day and tended to have an 11.2% slower (P < 0.10) eating rate. Low RFIg heifers had 7.7% lower (P < 0.05) methane (CH4) emissions (g/d), 6.1% lower (P ≤ 0.05) carbon dioxide (CO2) production (g/d), and 5.6% lower (P ≤ 0.05) heat production (Mcal/d) than high RFIg heifers. However, CH4 yield and CO2 yield (g/kg DMI), and heat production per unit DMI (Mcal/kg DMI) did not differ (P > 0.05) between heifers with divergent RFIg. Dry matter (DM) and nutrient digestibility did not differ (P > 0.05) between heifers with divergent RFIg. Results suggest that selection based on RFIg provides opportunities to select cattle with favorable feed efficiency phenotypes to increase the economic and environmental sustainability of the cattle industry.
Collapse
Affiliation(s)
- Keara O’Reilly
- Department of Animal Science, Texas A&M University, College Station, TX, 77845, USA
| | - Gordon E Carstens
- Department of Animal Science, Texas A&M University, College Station, TX, 77845, USA
| | | | | | | |
Collapse
|
2
|
Adams JM, Robe J, Grigsby Z, Rathert-Williams A, Major M, Lalman DL, Foote AP, Tedeschi LO, Beck PA. Effects of supplementation rate of an extruded dried distillers' grains cube fed to growing heifers on voluntary intake and digestibility of bermudagrass hay. J Anim Sci 2022; 100:6553186. [PMID: 35325181 PMCID: PMC9126203 DOI: 10.1093/jas/skac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Our objectives were to 1) investigate the difference in chemical composition and disappearance kinetics between loose dried distillers' grains (DDG) and extruded DDG cubes and 2) evaluate the effects of supplementation rate of extruded DDG cubes on voluntary dry matter intake (DMI), rate and extent of digestibility, and blood parameters of growing beef heifers offered ad libitum bermudagrass (Cynodon dactylon) hay. To characterize the changes in chemical composition during the extrusion process, loose and extruded DDG were evaluated via near-infrared reflectance spectroscopy, and dry matter (DM) disappearance kinetics were evaluated via time point in situ incubations. Extruded DDG cubes had greater (P ≤ 0.01) contents of fat, neutral detergent insoluble crude protein, and total digestible nutrients, but lower (P ≤ 0.01) neutral and acid detergent fiber than loose DDG. Additionally, the DM of extruded DDG cubes was more immediately soluble (P < 0.01), had greater (P < 0.01) effective degradability and lag time, and tended (P = 0.07) to have a greater disappearance rate than loose DDG. In the 29-d supplementation rate study, 23 Charolais-cross heifers were randomly assigned to one of four supplemental treatments: 1) control, no supplement; 2) low, 0.90 kg DDG cubes per d; 3) intermediate, 1.81 kg DDG cubes per d; or 4) high, 3.62 kg DDG cubes per d. Titanium dioxide was used as an external marker to estimate fecal output and particulate passage rate (Kp). Blood was collected from each animal to determine supplementation effects on blood metabolites. Indigestible neutral detergent fiber was used as an internal marker to assess the rate and extent of hay and diet DM digestibility (DMD). Increasing supplementation rate increased Kp and total diet DMI linearly (P < 0.01), yet linearly decreased (P < 0.01) hay DMI. Hay DMD decreased quadratically (P < 0.01), while total diet DMD increased linearly (P < 0.01) with increased DDG cube inclusion. Supplemented heifers had greater (P = 0.07) blood urea nitrogen concentrations than control animals 4 h post-supplementation. Intermediate and high rates of supplementation resulted in lower (P < 0.01) serum nonesterified fatty acid concentrations post-supplementation than control heifers. Concentrations of serum glucose and lactate were greatest (P ≤ 0.06) 8 h post-supplementation. Our results suggest that extruded DDG cubes may be an adequate supplement for cattle consuming moderate-quality forage, and further research is warranted.
Collapse
Affiliation(s)
- Jordan M Adams
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-5061, USA
| | - Jeff Robe
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-5061, USA
| | - Zane Grigsby
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-5061, USA
| | - Abigail Rathert-Williams
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-5061, USA
- Present address: Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA
| | - Mike Major
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-5061, USA
| | - David L Lalman
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-5061, USA
| | - Andrew P Foote
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-5061, USA
| | - Luis O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Paul A Beck
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-5061, USA
- Corresponding author:
| |
Collapse
|
4
|
Adams JM, Norris AB, Dias Batista LF, Rivera ME, Tedeschi LO. Comparison of in situ techniques to evaluate the recovery of indigestible components and the accuracy of digestibility estimates. J Anim Sci 2020; 98:5906375. [PMID: 33031504 DOI: 10.1093/jas/skaa296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Indigestible components, including indigestible dry matter (iDM) and indigestible neutral detergent fiber (iNDF), play an integral role as internal markers for determining ruminal kinetics and digestibility estimations. However, the accuracy of internal markers is dependent upon the incubation technique utilized as bag type (BT) and incubation length (IL) can be significant sources of error. Previous studies have primarily focused on iDM and iNDF as digestibility markers, but few studies have compared digestibility estimates to those of acid detergent insoluble ash (ADIA). Therefore, our objective was to investigate the effect of BT (F57, F58, and Dacron) and IL (288 and 576 h) on iDM and iNDF residues, DM and NDF digestibilities, and fecal recoveries when using in situ incubations. Additionally, we evaluated the accuracy of digestibility estimates when using iDM, iNDF, and ADIA. For iDM and iNDF, feed residues demonstrated a BT × IL interaction (P < 0.01). However, fecal residues were only influenced by the main effects of BT and IL (P < 0.01), with the F58 BT and 288-h IL having the greatest residues for both iDM and iNDF. The variation in residues was greatly reduced when using iNDF compared with iDM. Fecal recovery estimates most closely approximated 100% recovery when utilizing ADIA and iDM using the F57 × 576 h incubation method (P < 0.01), although recovery was overestimated for all incubation combinations. Fecal NDF recovery estimates better represented the excretion profiles when the F57 × 576 h combination was used with iDM as the internal marker (P < 0.01). Estimates of DM and NDF digestibility were the most accurate when utilizing ADIA (P < 0.01) relative to all other treatments. Our results indicate that the proper methodological application is specific to the purpose of the inferences. When evaluating fecal recoveries and digestibility, ADIA or iDM with F57 at 576-h in situ incubation provides the greatest accuracy.
Collapse
Affiliation(s)
- Jordan M Adams
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Aaron B Norris
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Madeline E Rivera
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Luis O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|