1
|
Parks C, Maskell PD, McKeown DA, Couchman L. Identification of 5-aminometonitazene and 5-acetamidometonitazene in a postmortem case: are nitro-nitazenes unstable? J Anal Toxicol 2024; 48:691-700. [PMID: 39219540 DOI: 10.1093/jat/bkae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
In recent years, the use of 2-benzylbenzimidazole opioids ('nitazenes') has increased with them becoming one of the most prominent synthetic opioid subclasses of novel psychoactive substances. With the increased prevalence, there is also a concern of the dangers to public health with the use of nitazenes due to their high potency especially with polypharmacy. To aid in the detection of such compounds, it is important that forensic toxicology laboratories maintain up-to-date compound libraries for drug screening methods and that sensitive analytical instrumentation is available to detect the low blood/plasma concentrations of more potent drugs. This includes not only the compounds themselves but also potential metabolites and/or degradation products. Metonitazene is a 'nitro-nitazene' with a nitro group at position 5 of the benzimidazole ring. As a nitro-nitazene, there is a potential for bacterial degradation of metonitazene to 5-aminometonitazene, as occurs with nitro-benzodiazepines. In this study, we provide evidence from a postmortem (PM) case of degradation of metonitazene in unpreserved PM blood using liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ-MS), and putative identification of the degradation/metabolic products 5-aminometonitazene and 5-acetamidometonitazene by liquid chromatography-quadrupole time-of-flight mass spectrometry. The results from LC-QQQ-MS analysis indicated that there did not appear to be such degradation in preserved (fluoride/oxalate) blood. These results suggest that nitro-nitazenes may be subject to similar in vitro stability/degradation issues as nitro-benzodiazepines. These breakdown products should be added to instrument libraries to aid in the detection of the use of nitro-nitazenes, and nitro-nitazenes should be quantified in preserved blood samples where available.
Collapse
Affiliation(s)
- Claire Parks
- SPA Forensic Services, Govan, Glasgow G51 3AD, United Kingdom
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Peter D Maskell
- SPA Forensic Services, Govan, Glasgow G51 3AD, United Kingdom
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Denise A McKeown
- SPA Forensic Services, Govan, Glasgow G51 3AD, United Kingdom
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Lewis Couchman
- Analytical Services International, St George's University of London, London SW17 0RE, United Kingdom
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
2
|
Taoussi O, Berardinelli D, Zaami S, Tavoletta F, Basile G, Kronstrand R, Auwärter V, Busardò FP, Carlier J. Human metabolism of four synthetic benzimidazole opioids: isotonitazene, metonitazene, etodesnitazene, and metodesnitazene. Arch Toxicol 2024; 98:2101-2116. [PMID: 38582802 PMCID: PMC11169013 DOI: 10.1007/s00204-024-03735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
Following isotonitazene scheduling in 2019, the availability of alternative 2-benzylbenzimidazole opioids (nitazenes) on the global drug market increased, resulting in many fatalities worldwide. Nitazenes are potent µ-opioid receptor agonists with strong narcotic/analgesic effects, and their concentrations in biological matrices are low, making the detection of metabolite biomarkers of consumption crucial to document use in clinical and forensic settings. However, there is little to no data on the metabolism of the most recently available nitazenes, especially desnitro-analogues. The aim of the research was to assess isotonitazene, metonitazene, etodesnitazene, and metodesnitazene human metabolism and identify specific metabolite biomarkers of consumption. The four analogues were incubated with 10-donor-pooled human hepatocytes, and the incubates were analyzed by liquid chromatography-high-resolution tandem mass spectrometry and data mining with Compound Discoverer (Thermo Scientific); the analysis was supported by in silico metabolite predictions with GLORYx open-access software. Metabolites were identified in postmortem blood and/or urine samples from two metonitazene-positive and three etodesnitazene-positive cases following the same workflow, with and without glucuronide hydrolysis in urine, to confirm in vitro results. Twelve, nine, twenty-two, and ten metabolites were identified for isotonitazene, metonitazene, etodesnitazene, and metodesnitazene, respectively. The main transformations were N-deethylation at the N,N-diethylethanamine side chain, O-dealkylation, and further O-glucuronidation. In vitro and autopsy results were consistent, demonstrating the efficacy of the 10-donor-pooled human hepatocyte model to predict human metabolism. We suggest the parent and the corresponding O-dealkyl- and N-deethyl-O-dealkyl metabolites as biomarkers of exposure in urine after glucuronide hydrolysis, and the corresponding N-deethyl metabolite as additional biomarker in blood.
Collapse
Affiliation(s)
- Omayema Taoussi
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy
| | - Diletta Berardinelli
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Tavoletta
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy
| | - Giuseppe Basile
- Department of Trauma Surgery, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Robert Kronstrand
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesco P Busardò
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy.
| | - Jeremy Carlier
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy
| |
Collapse
|
3
|
Murari M, Pesavento S, Greco F, Vettori A, Tagliaro F, Gottardo R. Study of metabolism and potential toxicity of nine synthetic opioid analogs using the zebrafish larvae model. Drug Test Anal 2024; 16:629-637. [PMID: 37916273 DOI: 10.1002/dta.3590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
The use of novel psychoactive substances (NPSs) has dramatically increased worldwide, and among them, synthetic opioids are one of the fastest growing groups, where cinnamylpiperazines and 2-benzylbenzimidazoles represent two of the most relevant subclasses. However, the data on their toxicity and metabolism are still limited. The aim of the present study was to evaluate the toxicity and metabolic pathways of some compounds belonging to these families, namely, AP-237, 2-methyl AP-237, isotonitazene, flunitazene, etodesnitazene, metonitazene, metodesnitazene, N-pyrrolidino etonitazene, and butonitazene. The study was performed using a zebrafish early life stages model. In fact, zebrafish (Danio rerio) embryos and larvae have recently been recognized as a suitable animal model in alternative to mammals, because they require less time and resources and do not need complex procedures for ethics approval. The cellular toxicity after a single administration was assessed at the fourth day post-fertilization with acridine orange staining. Possible morphological defects were evaluated with a light microscope after 24 h of exposure to 1 μmol/L concentration of each drug. Subsequently, the larvae were euthanized and underwent analysis of drug metabolites using UPLC coupled to an Orbitrap high-resolution mass spectrometer. High rates of morphological defects, as well as of cellular death, were detected, but no significant difference in mortality between treatment and control groups was observed. In addition, several metabolites, mainly produced through monohydroxylation, N-dealkylation, and O-dealkylation, were identified in the larvae extracts.
Collapse
Affiliation(s)
- Matilde Murari
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sara Pesavento
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesca Greco
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Rossella Gottardo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Identification of the Putative Binding Site of a Benzimidazole Opioid (Etazene) and Its Metabolites at µ-Opioid Receptor: A Human Liver Microsomal Assay and Systematic Computational Study. Molecules 2023; 28:molecules28041601. [PMID: 36838590 PMCID: PMC9959024 DOI: 10.3390/molecules28041601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
The synthetic benzimidazole opioid etazene (which has a 70-times higher analgesic activity than morphine), a recreational drug, has gained popularity as a novel psychoactive substance (NPS) on the illegal/darknet market; however, no experimental information is available at the molecular level on the binding mechanism and putative binding site of etazene and its metabolites at the µ-opioid receptor (MOR). In the present study, we investigated the metabolism of etazene in human liver microsomes using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). We also explored the possibilities of MOR activation by etazene and its metabolites by studying their binding mechanisms and interaction profiles at an active-state MOR model via molecular docking, binding free energy calculations, and all-atom molecular dynamics (MD) simulations. The putative metabolites of etazene were also predicted using the ADMET Predictor 10.1. The molecular docking studies and free energy calculations showed that etazene and its metabolites (M1, M2, and M5-M7) exhibited strong predicted binding affinity at MOR and showed overlapped binding orientation with MOR-bound agonist BU72, which was co-crystallized in the MOR X-ray crystal structure (PDB ID: 5C1M). MD also confirmed the stability of the MOR-etazene and MOR-M6 complexes. These results suggest that etazene and its metabolites may act as strong MOR agonists, highlighting the necessity of experimental validation. The insights from this study, such as key interactions between etazene and its metabolites and the MOR, will allow authorities to predict potential analogs and clarify the target-protein interactions associated with this illicit substance, granting advanced or rapid reactions to confiscating or banning potential emerging drugs.
Collapse
|
5
|
Verougstraete N, Verhaeghe A, Germonpré J, Lebbinck H, Verstraete AG. Identification of etazene (etodesnitazene) metabolites in human urine by LC-HRMS. Drug Test Anal 2023; 15:235-239. [PMID: 36181239 DOI: 10.1002/dta.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Etazene (or etodesnitazene) is a novel and highly active synthetic opioid belonging to the rapidly evolving and emerging group of "nitazenes." Etazene metabolites were identified through analysis of a human urine sample. The sample was obtained from a 25-year-old man who attempted suicide by taking a new psychoactive substances (NPS) cocktail purchased online and was analyzed by ultrahigh performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Etazene metabolites were predicted with BioTransformer 3.0, and the exact masses were added to the inclusion list. Eight possible metabolites were identified in the urine sample. N- and O-deethylation were identified as the predominant metabolism routes, resulting in M1 (O-deethylated etazene; most abundant metabolite based on the peak area), M2 (N-deethylated etazene), and M3 (N,O-dideethylated etazene) metabolites. Less abundant hydroxylated products of these deethylated metabolites and etazene were also found. Additionally, in the analysis without β-glucuronidase treatment, M1- and M3-glucuronide phase II metabolites were found. As N- and O-deethylated products seem to be the predominant urinary metabolites, the detection of these metabolites in urine can be useful to demonstrate etazene exposure.
Collapse
Affiliation(s)
- Nick Verougstraete
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | |
Collapse
|
6
|
Kimani MM, Kern S, Lanzarotta A, Thatcher M, Lorenz LM, Smith SW, Collins M, Howe GW, Wetherby AE. Rapid screening of 2-benzylbenzimidazole nitazene analogs in suspect counterfeit tablets using Raman, SERS, DART-TD-MS, and FT-IR. Drug Test Anal 2023; 15:539-550. [PMID: 36648419 DOI: 10.1002/dta.3440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Developing methods to rapidly screen for novel synthetic 2-benzylbenzimidazole opioids, also known as nitazenes, has become increasingly important due to their high potency. These compounds have potency comparable or exceeding that of fentanyl by up to 10 times and have been implicated in approximately 5% of all drug overdose deaths in the United States in 2021. This paper details the authenticity determination of suspect tablets and the identification of three nitazene analogs (N-pyrrolidino etonitazene, isotonitazene, and etodesnitazene) in suspect tablets seized at a mail facility using Raman and surface-enhanced Raman scattering (SERS) with handheld devices, portable Fourier transform infrared spectrometer (FT-IR), and a direct analysis in real-time ambient ionization coupled to a thermal desorption unit and a mass spectrometer (DART-TD-MS). These methods are rapid and excellent for screening opioids in suspect tablets but could not fully determine the exact structure of some of the nitazene analogs present due to spectral similarities or similar fragmentation patterns. Liquid chromatography-mass spectrometry (LC-MS) confirmed the presence of these nitazene compounds in addition to other opioids/drugs that were in trace quantities. The quantitative high-performance liquid chromatography coupled with ultraviolet (HPLC-UV) detection experiments determined that the suspect tablets contained an average of 0.817 mg of N-pyrrolidino etonitazene per tablet. The results obtained reveal that the simultaneous deployment of these complementary and orthogonal portable analytical techniques as part of a workflow allows suspect tablets to be screened and nitazene-type drugs to be identified in suspect counterfeit tablets at remote sampling sites.
Collapse
Affiliation(s)
- Martin M Kimani
- Office of Regulatory Affairs, Office of Regulatory Science, Forensic Chemistry Center, US Food and Drug Administration, Cincinnati, Ohio, USA
| | - Sara Kern
- Office of Regulatory Affairs, Office of Regulatory Science, Forensic Chemistry Center, US Food and Drug Administration, Cincinnati, Ohio, USA
| | - Adam Lanzarotta
- Office of Regulatory Affairs, Office of Regulatory Science, Forensic Chemistry Center, US Food and Drug Administration, Cincinnati, Ohio, USA
| | - Michael Thatcher
- Office of Regulatory Affairs, Office of Regulatory Science, Forensic Chemistry Center, US Food and Drug Administration, Cincinnati, Ohio, USA
| | - Lisa M Lorenz
- Office of Regulatory Affairs, Office of Regulatory Science, Forensic Chemistry Center, US Food and Drug Administration, Cincinnati, Ohio, USA
| | - Skyler W Smith
- Office of Regulatory Affairs, Office of Regulatory Science, Forensic Chemistry Center, US Food and Drug Administration, Cincinnati, Ohio, USA
| | - Melissa Collins
- Office of Regulatory Affairs, Office of Regulatory Science, Forensic Chemistry Center, US Food and Drug Administration, Cincinnati, Ohio, USA
| | - Gregory W Howe
- Office of Regulatory Affairs, Office of Regulatory Science, Pacific Southwest Medical Products Laboratory, US Food and Drug Administration, Irvine, California, USA
| | - Anthony E Wetherby
- Office of Regulatory Affairs, Office of Regulatory Science, Winchester Engineering Analytical Center, US Food and Drug Administration, Winchester, Massachusetts, USA
| |
Collapse
|
7
|
First identification, chemical analysis and pharmacological characterization of N-piperidinyl etonitazene (etonitazepipne), a recent addition to the 2-benzylbenzimidazole opioid subclass. Arch Toxicol 2022; 96:1865-1880. [PMID: 35449307 DOI: 10.1007/s00204-022-03294-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
N-Piperidinyl etonitazene ('etonitazepipne') represents a recent addition to the rapidly expanding class of 2-benzylbenzimidazole 'nitazene' opioids. Following its first identification in an online-sourced powder and in biological samples from a patient seeking help for detoxification, this report details its in-depth chemical analysis and pharmacological characterization. Analysis of the powder via different techniques (LC-HRMS, GC-MS, UHPLC-DAD, FT-IR) led to the unequivocal identification of N-piperidinyl etonitazene. Furthermore, we report the first activity-based detection and analytical identification of N-piperidinyl etonitazene in authentic samples. LC-HRMS analysis revealed concentrations of 1.21 ng/mL in serum and 0.51 ng/mL in urine, whereas molecular networking enabled the tentative identification of various (potentially active) urinary metabolites. In addition, we determined that the extent of opioid activity present in the patient's serum was equivalent to the in vitro opioid activity exerted by 2.5-10 ng/mL fentanyl or 10-25 ng/mL hydromorphone in serum. Radioligand binding assays in rat brain tissue revealed that the drug binds with high affinity (Ki = 14.3 nM) to the µ-opioid receptor (MOR). Using a MOR-β-arrestin2 activation assay, we found that N-piperidinyl etonitazene is highly potent (EC50 = 2.49 nM) and efficacious (Emax = 183% versus hydromorphone) in vitro. Pharmacodynamic evaluation in male Sprague Dawley rats showed that N-piperidinyl etonitazene induces opioid-like antinociceptive, cataleptic, and thermic effects, its potency in the hot plate assay (ED50 = 0.0205 mg/kg) being comparable to that of fentanyl (ED50 = 0.0209 mg/kg), and > 190 times higher than that of morphine (ED50 = 3.940 mg/kg). Taken together, our findings indicate that N-piperidinyl etonitazene is a potent opioid with the potential to cause harm in users.
Collapse
|