1
|
Zhai W, Qiao Z, Xiang P, Dang Y, Shi Y. A UPLC-MS/MS methodological approach for the analysis of 75 phenethylamines and their derivatives in hair. J Pharm Biomed Anal 2023; 229:115367. [PMID: 37018959 DOI: 10.1016/j.jpba.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
A rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the targeted analysis of 75 phenethylamines and their derivatives from the hair matrix. The monitored classes of phenethylamines included the 2C series, D series, N-benzyl derivatives, mescaline-derived compounds, MDMA analogs, and benzodifurans. Approximately 20 mg of hair was weighed and pulverized with 0.1% formic acid in methanol by cryogenic grinding. After ultrasonication, centrifugation, and filtration, the supernatant was analyzed by LC-MS/MS operating in the scheduled multiple reaction monitoring mode. Phenethylamines and their derivatives were separated in 13 min on a biphenyl column (2.6 µm, 100 Å, 100 × 3.0 mm) using a gradient eluting mobile phase composed of 0.1% formic acid in water and acetonitrile. The developed and validated method showed good selectivity, sensitivity (LOD: 0.5-10 pg/mg and LOQ: 1-20 pg/mg), linearity (R2 > 0.997), accuracy and precision (< 20%), and stability. The method also showed good recovery and acceptable matrix effects for most of the targeted compounds. This analytical approach was successfully applied for the identification and quantification of phenethylamines in hair from authentic forensic cases.
Collapse
Affiliation(s)
- Wenya Zhai
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China; College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zheng Qiao
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Shi
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China.
| |
Collapse
|
2
|
Nieddu M, Baralla E, Sodano F, Boatto G. Analysis of 2,5-dimethoxy-amphetamines and 2,5-dimethoxy-phenethylamines aiming their determination in biological matrices: a review. Forensic Toxicol 2023; 41:1-24. [PMID: 36652064 PMCID: PMC9849320 DOI: 10.1007/s11419-022-00638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE The present review aims to provide an overview of methods for the quantification of 2,5-dimethoxy-amphetamines and -phenethylamines in different biological matrices, both traditional and alternative ones. METHODS A complete literature search was carried out with PubMed, Scopus and the World Wide Web using relevant keywords, e.g., designer drugs, amphetamines, phenethylamines, and biological matrices. RESULTS Synthetic phenethylamines represent one of the largest classes of "designer drugs", obtained through chemical structure modifications of psychoactive substances to increase their pharmacological activities. This practice is also favored by the fact that every new synthetic compound is not considered illegal by existing legislation. Generally, in a toxicological laboratory, the first monitoring of drugs of abuse is made by rapid screening tests that sometimes can occur in false positive or false negative results. To reduce evaluation errors, it is mandatory to submit the positive samples to confirmatory methods, such as gas chromatography or liquid chromatography combined to mass spectrometry, for a more specific qualitative and quantitative analysis. CONCLUSIONS This review highlights the great need for updated comprehensive analytical methods, particularly when analyzing biological matrices, both traditional and alternative ones, for the search of newly emerging designer drugs.
Collapse
Affiliation(s)
- Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy.
| | - Elena Baralla
- grid.11450.310000 0001 2097 9138Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Federica Sodano
- grid.4691.a0000 0001 0790 385XDepartment of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Gianpiero Boatto
- grid.11450.310000 0001 2097 9138Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
3
|
New Synthetic Cathinones and Phenylethylamine Derivatives Analysis in Hair: A Review. Molecules 2021; 26:molecules26206143. [PMID: 34684725 PMCID: PMC8538434 DOI: 10.3390/molecules26206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The analysis of psychoactive substances in hair is of great importance for both clinical and forensic toxicologists since it allows one to evaluate past and continuative exposure to xenobiotics. In particular, a new challenge is represented by new psychoactive substances: Among this new class of drugs of abuse, synthetic cathinone and phenethylamine derivatives are often detected in biological samples. Hence, there is a growing need to develop new analytical procedures or improve old ones in order to conduct evaluations of these emerging substances. This study is a systematic review of all the instrumental and experimental data available in the literature. A total of 32 articles were included in the review. Acidic solvents proved to be the most reliable solutions for extraction. Gas chromatography and liquid chromatography coupled to tandem mass spectrometric and high-resolution mass spectrometric systems represent the majority of the involved instrumental techniques. Sensitivity must be maintained at the pg/mg level to detect any occurrences up to occasional consumption. In total, 23 out of 32 articles reported real positive samples. The most frequently detected substance in hair was mephedrone, followed by butylone, methylone, MDPV, and α-pyrrolidinophenone-type substances.
Collapse
|
4
|
Identification of 2C-B in Hair by UHPLC-HRMS/MS. A Real Forensic Case. TOXICS 2021; 9:toxics9070170. [PMID: 34357913 PMCID: PMC8309701 DOI: 10.3390/toxics9070170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
The analysis of drugs of abuse in hair and other biological matrices of forensic interest requires great selectivity and sensitivity. This has been traditionally achieved through target analysis, using one or more analytical methods that include different preanalytical stages, and more complex procedures followed by toxicological laboratories. There is no exception with 2C-series drugs, such as 2C-B, a new psychoactive substance (NPS), which use has emerged and significantly increased, year by year, in the last decades. Continuously new analytical methods are required to selectively detect and identify these new marketed substances at very low concentrations. In this case report, one former case of a polydrug consumer (charged of a crime against public health in Spain) was reanalyzed in hair matrix. In this reanalysis, 2C-B has been positively detected and identified using liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS). The most selective analytical UHPLC-HRMS/MS method alongside a universal and simpler pretreatment methodology has opened up more possibilities for the detection of substances of different chemical structure and optimization of different HRMS/MS detection approaches allowing the identification of 2-CB in the hair of a real forensic case.
Collapse
|
5
|
Cláudia M, Pedro A, Tiago R, Francisco CR, Eugenia G. Determination of New Psychoactive Substances in Whole Blood Using Microwave Fast Derivatization and Gas Chromatography/Mass Spectrometry. J Anal Toxicol 2020; 44:92-102. [PMID: 31436798 DOI: 10.1093/jat/bkz053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/15/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023] Open
Abstract
The production and consumption of new psychoactive substances (NPSs) has been raising a major concern worldwide. Due to easy access and available information, many NPSs continue to be synthesized with an alarming increase of those available to purchase, despite all the control efforts created. A new analytical method was developed and validated to determine a group of phenethylamines and synthetic cathinones: cathinone, flephedrone, buphedrone, 4-MTA, α-PVP, methylone, 2C-P, ethylone, pentylone, MDPV and bromo-dragonFLY in whole blood. A mixed-mode solid phase extraction was applied to 250 μL of sample, and the extracts were derivatized with fast microwave technique before being analyzed by gas chromatography-mass spectrometry (GC-MS). The validation procedure followed the Scientific Working Group for Forensic Toxicology (SWGTOX) guidelines with parameters that included selectivity, linearity, limits of detection and quantification, intra- and inter-day precision and accuracy, recoveries and stability. The method presented linearity between 5 and 500 ng/mL for cathinone, buphedrone, 4-MTA, methylone, 2C-P and bromo-dragonFLY, 10-500 ng/mL for flephedrone, ethylone, pentylone and MDPV, and 40-500 ng/mL for α-PVP, with determination coefficients above 0.99 for all analytes. Recoveries ranged between 70.3% and 116.6%, and regarding intra- and inter-day precision, the relative mean errors were typically lower than 8.6%. The method was successfully applied to over 100 authentic samples from the Laboratory of Chemistry and Forensic Toxicology, Centre Branch, of the National Institute of Legal Medicine and Forensic Sciences, Portugal.
Collapse
Affiliation(s)
- Margalho Cláudia
- Instituto Nacional de Medicina Legal e Ciências Forenses - Delegação do Centro, Serviço de Química e Toxicologia Forenses, Largo da Sé Nova, 3000-213, Coimbra Portugal
| | - Almeida Pedro
- Instituto Nacional de Medicina Legal e Ciências Forenses - Delegação do Centro, Serviço de Química e Toxicologia Forenses, Largo da Sé Nova, 3000-213, Coimbra Portugal.,Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Rosado Tiago
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal.,Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, EM506, 6200-284, Covilhã, Portugal
| | - Corte Real Francisco
- Instituto Nacional de Medicina Legal e Ciências Forenses - Delegação do Centro, Serviço de Química e Toxicologia Forenses, Largo da Sé Nova, 3000-213, Coimbra Portugal
| | - Gallardo Eugenia
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal.,Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, EM506, 6200-284, Covilhã, Portugal
| |
Collapse
|
6
|
|
7
|
Remane D, Wissenbach DK, Peters FT. Recent advances of liquid chromatography–(tandem) mass spectrometry in clinical and forensic toxicology — An update. Clin Biochem 2016; 49:1051-71. [DOI: 10.1016/j.clinbiochem.2016.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/04/2016] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
|
8
|
Thevis M, Kuuranne T, Walpurgis K, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2016; 8:7-29. [PMID: 26767774 DOI: 10.1002/dta.1928] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
The aim of improving anti-doping efforts is predicated on several different pillars, including, amongst others, optimized analytical methods. These commonly result from exploiting most recent developments in analytical instrumentation as well as research data on elite athletes' physiology in general, and pharmacology, metabolism, elimination, and downstream effects of prohibited substances and methods of doping, in particular. The need for frequent and adequate adaptations of sports drug testing procedures has been incessant, largely due to the uninterrupted emergence of new chemical entities but also due to the apparent use of established or even obsolete drugs for reasons other than therapeutic means, such as assumed beneficial effects on endurance, strength, and regeneration capacities. Continuing the series of annual banned-substance reviews, literature concerning human sports drug testing published between October 2014 and September 2015 is summarized and reviewed in reference to the content of the 2015 Prohibited List as issued by the World Anti-Doping Agency (WADA), with particular emphasis on analytical approaches and their contribution to enhanced doping controls.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne/Bonn, Germany
| | - Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories, Höyläämötie 14, 00380, Helsinki, Finland
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Hans Geyer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|