1
|
Kerek Á, Török B, Laczkó L, Somogyi Z, Kardos G, Bányai K, Kaszab E, Bali K, Jerzsele Á. In Vitro Microevolution and Co-Selection Assessment of Amoxicillin and Cefotaxime Impact on Escherichia coli Resistance Development. Antibiotics (Basel) 2024; 13:247. [PMID: 38534682 DOI: 10.3390/antibiotics13030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The global spread of antimicrobial resistance has become a prominent issue in both veterinary and public health in the 21st century. The extensive use of amoxicillin, a beta-lactam antibiotic, and consequent resistance development are particularly alarming in food-producing animals, with a focus on the swine and poultry sectors. Another beta-lactam, cefotaxime, is widely utilized in human medicine, where the escalating resistance to third- and fourth-generation cephalosporins is a major concern. The aim of this study was to simulate the development of phenotypic and genotypic resistance to beta-lactam antibiotics, focusing on amoxicillin and cefotaxime. The investigation of the minimal inhibitory concentrations (MIC) of antibiotics was performed at 1×, 10×, 100×, and 1000× concentrations using the modified microbial evolution and growth arena (MEGA-plate) method. Our results indicate that amoxicillin significantly increased the MIC values of several tested antibiotics, except for oxytetracycline and florfenicol. In the case of cefotaxime, this increase was observed in all classes. A total of 44 antimicrobial resistance genes were identified in all samples. Chromosomal point mutations, particularly concerning cefotaxime, revealed numerous complex mutations, deletions, insertions, and single nucleotide polymorphisms (SNPs) that were not experienced in the case of amoxicillin. The findings suggest that, regarding amoxicillin, the point mutation of the acrB gene could explain the observed MIC value increases due to the heightened activity of the acrAB-tolC efflux pump system. However, under the influence of cefotaxime, more intricate processes occurred, including complex amino acid substitutions in the ampC gene promoter region, increased enzyme production induced by amino acid substitutions and SNPs, as well as mutations in the acrR and robA repressor genes that heightened the activity of the acrAB-tolC efflux pump system. These changes may contribute to the significant MIC increases observed for all tested antibiotics. The results underscore the importance of understanding cross-resistance development between individual drugs when choosing clinical alternative drugs. The point mutations in the mdtB and emrR genes may also contribute to the increased activity of the mdtABC-tolC and emrAB-tolC pump systems against all tested antibiotics. The exceptionally high mutation rate induced by cephalosporins justifies further investigations to clarify the exact mechanism behind.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Bence Török
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Levente Laczkó
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Gábor Kardos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- National Public Health Center, Albert Flórián út 2-6, H-1097 Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Sóstói út 2-4, H-4400 Nyíregyháza, Hungary
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Eszter Kaszab
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary
| | - Krisztina Bali
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| |
Collapse
|
2
|
Kerek Á, Török B, Laczkó L, Kardos G, Bányai K, Somogyi Z, Kaszab E, Bali K, Jerzsele Á. In Vitro Microevolution and Co-Selection Assessment of Florfenicol Impact on Escherichia coli Resistance Development. Antibiotics (Basel) 2023; 12:1728. [PMID: 38136762 PMCID: PMC10740648 DOI: 10.3390/antibiotics12121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The issue of antimicrobial resistance is becoming an increasingly serious challenge in both human and veterinary medicine. Prudent antimicrobial use in veterinary medicine is warranted and supported by international guidelines, with the Antimicrobial Advice Ad Hoc Expert Group (AMEG) placing particular emphasis on the critically important group B antimicrobials. These antimicrobials are commonly employed, especially in the poultry and swine industry. The impact of florfenicol, a veterinary antibiotic, was studied on the resistance development of Escherichia coli. The aim of the study was to investigate the effect of the use of florfenicol on the development of phenotypic and genomic resistances, not only to the drug itself but also to other drugs. The minimum inhibitory concentrations (MICs) of the antibiotics were investigated at 1×, 10×, 100× and 1000× concentrations using the adapted Microbial Evolution and Growth Arena (MEGA-plate) method. The results demonstrate that florfenicol can select for resistance to fluoroquinolone antibiotics (167× MIC value increase) and cephalosporins (67× MIC value increase). A total of 44 antimicrobial resistance genes were identified, the majority of which were consistent across the samples. Chromosomal point mutations, including alterations in resistance-associated and regulatory genes (acrB, acrR, emrR and robA), are thought to trigger multiple drug efflux pump activations, leading to phenotypically increased resistance. The study underscores the impact of florfenicol and its role in the development of antimicrobial resistance, particularly concerning fluoroquinolone antibiotics and cephalosporins. This study is the first to report florfenicol's dose-dependent enhancement of other antibiotics' MICs, linked to mutations in SOS-box genes (mdtABC-tolC, emrAB-tolC and acrAB-tolC) and increased multidrug efflux pump genes. Mutations in the regulatory genes acrR, emrR and rpbA support the possibility of increased gene expression. The results are crucial for understanding antimicrobial resistance and its development, highlighting the promising potential of in vitro evolutionary and coselection studies for future research.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (B.T.); (K.B.); (Z.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (G.K.); (E.K.)
| | - Bence Török
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (B.T.); (K.B.); (Z.S.); (Á.J.)
| | - Levente Laczkó
- Institute of Metagenomics, University of Debrecen, 4032 Debrecen, Hungary;
| | - Gábor Kardos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (G.K.); (E.K.)
- Institute of Metagenomics, University of Debrecen, 4032 Debrecen, Hungary;
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (B.T.); (K.B.); (Z.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (G.K.); (E.K.)
- Veterinary Medical Research Institute, 1143 Budapest, Hungary;
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (B.T.); (K.B.); (Z.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (G.K.); (E.K.)
| | - Eszter Kaszab
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (G.K.); (E.K.)
- Veterinary Medical Research Institute, 1143 Budapest, Hungary;
| | - Krisztina Bali
- Veterinary Medical Research Institute, 1143 Budapest, Hungary;
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (B.T.); (K.B.); (Z.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (G.K.); (E.K.)
| |
Collapse
|
3
|
Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023; 11:1690. [PMID: 37512863 PMCID: PMC10385648 DOI: 10.3390/microorganisms11071690] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative bacteria depend on their cell membranes for survival and environmental adaptation. They contain two membranes, one of which is the outer membrane (OM), which is home to several different outer membrane proteins (Omps). One class of important Omps is porins, which mediate the inflow of nutrients and several antimicrobial drugs. The microorganism's sensitivity to antibiotics, which are predominantly targeted at internal sites, is greatly influenced by the permeability characteristics of porins. In this review, the properties and interactions of five common porins, OmpA, OmpC, OmpF, OmpW, and OmpX, in connection to porin-mediated permeability are outlined. Meanwhile, this review also highlighted the discovered regulatory characteristics and identified molecular mechanisms in antibiotic penetration through porins. Taken together, uncovering porins' functional properties will pave the way to investigate effective agents or approaches that use porins as targets to get rid of resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qian Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xia Wen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruqun Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liangqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
4
|
Guérin F, Gravey F, Reissier S, Penven M, Michaux C, Le Hello S, Cattoir V. Temocillin Resistance in the Enterobacter cloacae Complex Is Conferred by a Single Point Mutation in BaeS, Leading to Overexpression of the AcrD Efflux Pump. Antimicrob Agents Chemother 2023; 67:e0035823. [PMID: 37195180 PMCID: PMC10269110 DOI: 10.1128/aac.00358-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
The Enterobacter cloacae complex (ECC) has become a major opportunistic pathogen with antimicrobial resistance issues. Temocillin, an "old" carboxypenicillin that is remarkably stable toward β-lactamases, has been used as an alternative for the treatment of multidrug-resistant ECC infections. Here, we aimed at deciphering the never-investigated mechanisms of temocillin resistance acquisition in Enterobacterales. By comparative genomic analysis of two clonally related ECC clinical isolates, one susceptible (Temo_S [MIC of 4 mg/L]) and the other resistant (Temo_R [MIC of 32 mg/L]), we found that they differed by only 14 single-nucleotide polymorphisms, including one nonsynonymous mutation (Thr175Pro) in the two-component system (TCS) sensor histidine kinase BaeS. By site-directed mutagenesis in Escherichia coli CFT073, we demonstrated that this unique change in BaeS was responsible for a significant (16-fold) increase in temocillin MIC. Since the BaeSR TCS regulates the expression of two resistance-nodulation-cell division (RND)-type efflux pumps (namely, AcrD and MdtABCD) in E. coli and Salmonella, we demonstrated by quantitative reverse transcription-PCR that mdtB, baeS, and acrD genes were significantly overexpressed (15-, 11-, and 3-fold, respectively) in Temo_R. To confirm the role of each efflux pump in this mechanism, multicopy plasmids harboring mdtABCD or acrD were introduced into either Temo_S or the reference strain E. cloacae subsp. cloacae ATCC 13047. Interestingly, only the overexpression of acrD conferred a significant increase (from 8- to 16-fold) of the temocillin MIC. Altogether, we have shown that temocillin resistance in the ECC can result from a single BaeS alteration, likely resulting in the permanent phosphorylation of BaeR and leading to AcrD overexpression and temocillin resistance through enhanced active efflux.
Collapse
Affiliation(s)
- François Guérin
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| | - François Gravey
- Normandie Université, UNICAEN, UNIROUEN, INSERM UMR 1311 DYNAMICURE, Caen, France
- Microbiology Department, CHU Caen, Caen, France
| | - Sophie Reissier
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| | - Malo Penven
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| | | | - Simon Le Hello
- Normandie Université, UNICAEN, UNIROUEN, INSERM UMR 1311 DYNAMICURE, Caen, France
- Microbiology Department, CHU Caen, Caen, France
| | - Vincent Cattoir
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| |
Collapse
|
5
|
Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. mSphere 2022; 7:e0038322. [PMID: 36286534 PMCID: PMC9769886 DOI: 10.1128/msphere.00383-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.
Collapse
|
6
|
Li L, Qi C, Wei Q, Zhang L, Fu H, Jiang X, Lu F, Sun F. BaeR overexpression enhances the susceptibility of acrB deleted Salmonella enterica serovar Typhimurium to polymyxin. Vet Microbiol 2022; 274:109552. [DOI: 10.1016/j.vetmic.2022.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/17/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
|
7
|
Identification of Multiple Low-Level Resistance Determinants and Coselection of Motility Impairment upon Sub-MIC Ceftriaxone Exposure in Escherichia coli. mSphere 2021; 6:e0077821. [PMID: 34787446 PMCID: PMC8597738 DOI: 10.1128/msphere.00778-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to third-generation cephalosporins among Gram-negative bacteria is a rapidly growing public health threat. Among the most commonly used third-generation cephalosporins is ceftriaxone. Bacterial exposure to sublethal or sub-MIC antibiotic concentrations occurs widely, from environmental residues to intermittently at the site of infection. Quality of ceftriaxone is also a concern, especially in low- and middle-income countries, with medicines having inappropriate active pharmaceutical ingredient (API) content or concentration. While focus has been largely on extended-spectrum β-lactamases and high-level resistance, there are limited data on specific chromosomal mutations and other pathways that contribute to ceftriaxone resistance under these conditions. In this work, Escherichia coli cells were exposed to a broad range of sub-MICs of ceftriaxone and mutants were analyzed using whole-genome sequencing. Low-level ceftriaxone resistance emerged after as low as 10% MIC exposure, with the frequency of resistance development increasing with concentration. Genomic analyses of mutants revealed multiple genetic bases. Mutations were enriched in genes associated with porins (envZ, ompF, ompC, and ompR), efflux regulation (marR), and the outer membrane and metabolism (galU and pgm), but none were associated with the ampC β-lactamase. We also observed selection of mgrB mutations. Notably, pleiotropic effects on motility and cell surface were selected for in multiple independent genes, which may have important consequences. Swift low-level resistance development after exposure to low ceftriaxone concentrations may result in reservoirs of bacteria with relevant mutations for survival and increased resistance. Thus, initiatives for broader surveillance of low-level antibiotic resistance and genomic resistance determinants should be pursued when resources are available. IMPORTANCE Ceftriaxone is a widely consumed antibiotic used to treat bacterial infections. Bacteria, however, are increasingly becoming resistant to ceftriaxone. Most work has focused on known mechanisms associated with high-level ceftriaxone resistance. However, bacteria are extensively exposed to low antibiotic concentrations, and there are limited data on the evolution of ceftriaxone resistance under these conditions. In this work, we observed that bacteria quickly developed low-level resistance due to both novel and previously described mutations in multiple different genes upon exposure to low ceftriaxone concentrations. Additionally, exposure also led to changes in motility and the cell surface, which can impact other processes associated with resistance and infection. Notably, low-level-resistant bacteria would be missed in the clinic, which uses set breakpoints. While they may require increased resources, this work supports continued initiatives for broader surveillance of low-level antibiotic resistance or their resistance determinants, which can serve as predictors of higher risk for clinical resistance.
Collapse
|
8
|
Mushtaq S, Vickers A, Ellaby N, Woodford N, Livermore DM. Selection and characterization of mutational resistance to aztreonam/avibactam in β-lactamase-producing Enterobacterales. J Antimicrob Chemother 2021; 77:98-111. [PMID: 34568905 DOI: 10.1093/jac/dkab346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Aztreonam/avibactam is being developed for its broad activity against carbapenemase-producing Enterobacterales, including those with metallo-β-lactamases (MBLs). Its potential to select resistance in target pathogens was explored. Findings are compared with previous data for ceftazidime/avibactam and ceftaroline/avibactam. METHODS Single-step mutants were sought from 52 Enterobacterales with AmpC, ESBL, KPC, MBL and OXA-48-like enzymes. Mutation frequencies were calculated. MICs were determined by CLSI agar dilution. Genomes were sequenced using Illumina methodology. RESULTS Irrespective of β-lactamase type and of whether avibactam was used at 1 or 4 mg/L, mutants could rarely be obtained at >4× the starting MIC, and most MIC rises were correspondingly small. Putative resistance (MIC >8 + 4 mg/L) associated with changes to β-lactamases was seen only for mutants of AmpC, where it was associated with Asn346Tyr and Tyr150Cys substitutions. Asn346Tyr led to broad resistance to avibactam combinations; Tyr150Cys significantly affected only aztreonam/avibactam. MIC rises up to 4 + 4 mg/L were seen for producers of mutant KPC-2 or -3 enzymes, and were associated with Trp105Arg, Ser106Pro and Ser109Pro substitutions, which all reduced the MICs of other β-lactams. For producers of other β-lactamase types, we largely found mutants with lesions in baeRS or envZ, putatively affecting drug accumulation. Single mutants had lesions in ampD, affecting AmpC expression or ftsI, encoding PBP3. CONCLUSIONS The risk of mutational resistance to aztreonam/avibactam appears smaller than for ceftazidime/avibactam, where Asp179Tyr arises readily in KPC enzymes, conferring frank resistance. Asn346 substitutions in AmpC enzymes may remain a risk, having been repeatedly selected with multiple avibactam combinations in vitro.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England National Infection Service, London, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England National Infection Service, London, UK
| | - Nicholas Ellaby
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England National Infection Service, London, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England National Infection Service, London, UK
| | | |
Collapse
|
9
|
Sheikh SW, Ali A, Ahsan A, Shakoor S, Shang F, Xue T. Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli. Antibiotics (Basel) 2021; 10:522. [PMID: 34063307 PMCID: PMC8147483 DOI: 10.3390/antibiotics10050522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of multidrug-resistant pathogens presents a global challenge for treating and preventing disease spread through zoonotic transmission. The water and foodborne Enterohaemorrhagic Escherichia coli (EHEC) are capable of causing intestinal and systemic diseases. The root cause of the emergence of these strains is their metabolic adaptation to environmental stressors, especially acidic pH. Acid treatment is desired to kill pathogens, but the protective mechanisms employed by EHECs cross-protect against antimicrobial peptides and thus facilitate opportunities for survival and pathogenesis. In this review, we have discussed the correlation between acid tolerance and antibiotic resistance, highlighting the identification of novel targets for potential production of antimicrobial therapeutics. We have also summarized the molecular mechanisms used by acid-adapted EHECs, such as the two-component response systems mediating structural modifications, competitive inhibition, and efflux activation that facilitate cross-protection against antimicrobial compounds. Moving beyond the descriptive studies, this review highlights low pH stress as an emerging player in the development of cross-protection against antimicrobial agents. We have also described potential gene targets for innovative therapeutic approaches to overcome the risk of multidrug-resistant diseases in healthcare and industry.
Collapse
Affiliation(s)
- Salma Waheed Sheikh
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Asma Ahsan
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Punjab, Pakistan;
| | - Sidra Shakoor
- Station de Neucfchateau, CIRAD, 97130 Sainte-Marie, Capesterre Belle Eau, Guadeloupe, France;
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| |
Collapse
|