1
|
Chen X, Hu J, Zhong H, Wu Q, Fang Z, Cai Y, Huang P, Abubakar YS, Zhou J, Naqvi NI, Wang Z, Zheng W. Vacuolar recruitment of retromer by a SNARE complex enables infection-related trafficking in rice blast. THE NEW PHYTOLOGIST 2024; 244:997-1012. [PMID: 39180241 DOI: 10.1111/nph.20069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
The retromer complex is a conserved sorting machinery that maintains cellular protein homeostasis by transporting vesicles containing cargo proteins to defined destinations. It is known to sort proteins at the vacuole membranes for retrograde trafficking, preventing their degradation in the vacuole. However, the detailed mechanism of retromer recruitment to the vacuole membrane has not yet been elucidated. Here, we show that the vacuolar SNARE complex MoPep12-MoVti1-MoVam7-MoYkt6 regulates retromer-mediated vesicle trafficking by recruiting the retromer to the vacuole membrane, which promotes host invasion in Magnaporthe oryzae. Such recruitment is also essential for the retrieval of the autophagy regulator MoAtg8 and enables appressorium-mediated host penetration. Furthermore, the vacuolar SNARE subunits are involved in suppressing the host defense response by regulating the deployment of retromer-MoSnc1-mediated effector secretion. Altogether, our results provide insights into the mechanism of vacuolar SNAREs-dependent retromer recruitment which is necessary for pathogenicity-related membrane trafficking events in the rice blast fungus.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Jiexiong Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Haoming Zhong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Qiuqiu Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Zhenyu Fang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yan Cai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Panpan Huang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Jie Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, 117604, Singapore
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenhui Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| |
Collapse
|
2
|
Szenci G, Glatz G, Takáts S, Juhász G. The Ykt6-Snap29-Syx13 SNARE complex promotes crinophagy via secretory granule fusion with Lamp1 carrier vesicles. Sci Rep 2024; 14:3200. [PMID: 38331993 PMCID: PMC10853563 DOI: 10.1038/s41598-024-53607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.
Collapse
Affiliation(s)
- Győző Szenci
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Gábor Glatz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary.
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary.
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, Szeged, 6726, Hungary.
| |
Collapse
|
3
|
Sumya FT, Pokrovskaya ID, D'Souza Z, Lupashin VV. Acute COG complex inactivation unveiled its immediate impact on Golgi and illuminated the nature of intra-Golgi recycling vesicles. Traffic 2023; 24:52-75. [PMID: 36468177 PMCID: PMC9969905 DOI: 10.1111/tra.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina D. Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zinia D'Souza
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
4
|
Marchwicka A, Kamińska D, Monirialamdari M, Błażewska KM, Gendaszewska-Darmach E. Protein Prenyltransferases and Their Inhibitors: Structural and Functional Characterization. Int J Mol Sci 2022; 23:ijms23105424. [PMID: 35628237 PMCID: PMC9141697 DOI: 10.3390/ijms23105424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Protein prenylation is a post-translational modification controlling the localization, activity, and protein–protein interactions of small GTPases, including the Ras superfamily. This covalent attachment of either a farnesyl (15 carbon) or a geranylgeranyl (20 carbon) isoprenoid group is catalyzed by four prenyltransferases, namely farnesyltransferase (FTase), geranylgeranyltransferase type I (GGTase-I), Rab geranylgeranyltransferase (GGTase-II), and recently discovered geranylgeranyltransferase type III (GGTase-III). Blocking small GTPase activity, namely inhibiting prenyltransferases, has been proposed as a potential disease treatment method. Inhibitors of prenyltransferase have resulted in substantial therapeutic benefits in various diseases, such as cancer, neurological disorders, and viral and parasitic infections. In this review, we overview the structure of FTase, GGTase-I, GGTase-II, and GGTase-III and summarize the current status of research on their inhibitors.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (A.M.); (D.K.)
| | - Daria Kamińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (A.M.); (D.K.)
| | - Mohsen Monirialamdari
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.M.); (K.M.B.)
| | - Katarzyna M. Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.M.); (K.M.B.)
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (A.M.); (D.K.)
- Correspondence:
| |
Collapse
|
5
|
Li Q, Lu J, Zhang G, Liu S, Zhou J, Du G, Chen J. Recent advances in the development of Aspergillus for protein production. BIORESOURCE TECHNOLOGY 2022; 348:126768. [PMID: 35091037 DOI: 10.1016/j.biortech.2022.126768] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Aspergillus had been widely used in the industrial production of recombinant proteins. In addition to the safety and broad substrate utilization spectrum, its efficient post-translational modification and strong protein secretion capacity have significant advantages for developing an excellent protein-producing cell factory in industrial production. However, the difficulties in genetic manipulation of Aspergillus and varying expression levels of different heterologous proteins hampered its further development and application. Recently, the development of CRISPR genome editing and high-throughput screening platforms has facilitated the Aspergillus development of a wide range of modifications and applications. Meanwhile, multi-omics analysis and multiplexed genetic engineering have promoted effective knowledge mining. This paper provides a comprehensive and updated review of these advances, including high-throughput screening, genome editing, protein expression modules, and fermentation optimization. It also highlights and discusses the latest significant progress, aiming to provide a practical guide for implementing Aspergillus as an efficient protein-producing cell factory.
Collapse
Affiliation(s)
- Qinghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jinchang Lu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Saito-Nakano Y, Makiuchi T, Tochikura M, Gilchrist CA, Petri WA, Nozaki T. ArfX2 GTPase Regulates Trafficking From the Trans-Golgi to Lysosomes and Is Necessary for Liver Abscess Formation in the Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 11:794152. [PMID: 34976870 PMCID: PMC8719317 DOI: 10.3389/fcimb.2021.794152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amoebic dysentery and liver abscess in humans. The parasitic lifestyle and the virulence of the protist require elaborate biological processes, including vesicular traffic and stress management against a variety of reactive oxygen and nitrogen species produced by the host immune response. Although the mechanisms for intracellular traffic of representative virulence factors have been investigated at molecular levels, it remains poorly understood whether and how intracellular traffic is involved in the defense against reactive oxygen and nitrogen species. Here, we demonstrate that EhArfX2, one of the Arf family of GTPases known to be involved in the regulation of vesicular traffic, was identified by comparative transcriptomic analysis of two isogenic strains: an animal-passaged highly virulent HM-1:IMSS Cl6 and in vitro maintained attenuated avirulent strain. EhArfX2 was identified as one of the most highly upregulated genes in the highly virulent strain. EhArfX2 was localized to small vesicle-like structures and largely colocalized with the marker for the trans-Golgi network SNARE, EhYkt6, but neither with the endoplasmic reticulum (ER)-resident chaperon, EhBip, nor the cis-Golgi SNARE, EhSed5, and Golgi-luminal galactosyl transferase, EhGalT. Expression of the dominant-active mutant form of EhArfX2 caused an increase in the number of lysosomes, while expression of the dominant-negative mutant led to a defect in lysosome formation and cysteine protease transport to lysosomes. Expression of the dominant-negative mutant in the virulent E. histolytica strain caused a reduction of the size of liver abscesses in a hamster model. This defect in liver abscess formation was likely at least partially attributed to reduced resistance to nitrosative, but not oxidative stress in vitro. These results showed that the EhArfX2-mediated traffic is necessary for the nitrosative stress response and virulence in the host.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Mami Tochikura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Carol A Gilchrist
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - William A Petri
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
7
|
Pokrywka NJ, Bush S, Nick SE. The R-SNARE Ykt6 is required for multiple events during oogenesis in Drosophila. Cells Dev 2021; 169:203759. [PMID: 34856414 DOI: 10.1016/j.cdev.2021.203759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/31/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022]
Abstract
Ykt6 has emerged as a key protein involved in a wide array of trafficking events, and has also been implicated in a number of human pathologies, including the progression of several cancers. It is a complex protein that simultaneously exhibits a high degree of structural and functional homology, and yet adopts differing roles in different cellular contexts. Because Ykt6 has been implicated in a variety of vesicle fusion events, we characterized the role of Ykt6 in oogenesis by observing the phenotype of Ykt6 germline clones. Immunofluorescence was used to visualize the expression of membrane proteins, organelles, and vesicular trafficking markers in mutant egg chambers. We find that Ykt6 germline clones have morphological and actin defects affecting both the nurse cells and oocyte, consistent with a role in regulating membrane growth during mid-oogenesis. Additionally, these egg chambers exhibit defects in bicoid and oskar RNA localization, and in the trafficking of Gurken during mid-to-late oogenesis. Finally, we show that Ykt6 mutations result in defects in late endosomal pathways, including endo- and exocytosis. These findings suggest a role for Ykt6 in endosome maturation and in the movement of membranes to and from the cell surface.
Collapse
Affiliation(s)
- Nancy Jo Pokrywka
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, United States of America.
| | - Setse Bush
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, United States of America
| | - Sophie E Nick
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, United States of America
| |
Collapse
|
8
|
Habernig L, Broeskamp F, Aufschnaiter A, Diessl J, Peselj C, Urbauer E, Eisenberg T, de Ory A, Büttner S. Ca2+ administration prevents α-synuclein proteotoxicity by stimulating calcineurin-dependent lysosomal proteolysis. PLoS Genet 2021; 17:e1009911. [PMID: 34780474 PMCID: PMC8629384 DOI: 10.1371/journal.pgen.1009911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/29/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson's disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boosts lysosomal proteolysis. Heterologous expression of human α-synuclein (αSyn), a protein critically linked to Parkinson's disease, selectively increases total cellular Ca2+ content, while the levels of manganese and iron remain unchanged. Disrupted Ca2+ homeostasis results in inhibition of the lysosomal protease cathepsin D and triggers premature cellular and organismal death. External administration of Ca2+ reduces αSyn oligomerization, stimulates cathepsin D activity and in consequence restores survival, which critically depends on the Ca2+/calmodulin-dependent phosphatase calcineurin. In flies, increasing the availability of Ca2+ discloses a neuroprotective role of αSyn upon manganese overload. In sum, we establish a molecular interplay between cathepsin D and calcineurin that can be activated by Ca2+ administration to counteract αSyn proteotoxicity.
Collapse
Affiliation(s)
- Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elisabeth Urbauer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth–University of Graz, Graz, Austria
| | - Ana de Ory
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|