1
|
Zhao W, Zhang X, Zhao J, Fan N, Rong J. SUMOylation of Nuclear γ-Actin by SUMO2 supports DNA Damage Repair against Myocardial Ischemia-Reperfusion Injury. Int J Biol Sci 2022; 18:4595-4609. [PMID: 35864967 PMCID: PMC9295056 DOI: 10.7150/ijbs.74407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction triggers oxidative DNA damage, apoptosis and adverse cardiac remodeling in the heart. Small ubiquitin-like modifier (SUMO) proteins mediate post-translational SUMOylation of the cardiac proteins in response to oxidative stress signals. Upregulation of isoform SUMO2 could attenuate myocardial injury via increasing protein SUMOylation. The present study aimed to discover the identity and cardioprotective activities of SUMOylated proteins. A plasmid vector for expressing N-Strep-SUMO2 protein was generated and introduced into H9c2 rat cardiomyocytes. The SUMOylated proteins were isolated with Strep-Tactin® agarose beads and identified by MALDI-TOF-MS technology. As a result, γ-actin was identified from a predominant protein band of ~42 kDa and verified by Western blotting. The roles of SUMO2 and γ-actin SUMOylation were subsequently determined in a mouse model of myocardial infarction induced by ligating left anterior descending coronary artery and H9c2 cells challenged by hypoxia-reoxygenation. In vitro lentiviral-mediated SUMO2 expression in H9c2 cells were used to explore the role of SUMOylation of γ-actin. SUMOylation of γ-actin by SUMO2 was proven to be a new cardioprotective mechanism from the following aspects: 1) SUMO2 overexpression reduced the number of TUNEL positive cells, the levels of 8-OHdG and p-γ-H2ax while promoted the nuclear deposition of γ-actin in mouse model and H9c2 cell model of myocardial infarction; 2) SUMO-2 silencing decreased the levels of nuclear γ-actin and SUMOylation while exacerbated DNA damage; 3) Mutated γ-actin (K68R/K284R) void of SUMOylation sites failed to protect cardiomyocytes against hypoxia-reoxygenation challenge. The present study suggested that SUMO2 upregulation promoted DNA damage repair and attenuated myocardial injury via increasing SUMOylation of γ-actin in the cell nucleus.
Collapse
Affiliation(s)
- Wei Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China.,Zhujiang Hospital, Southern Medical University, 253 Industrial Road, Guangzhou 51000, Guangdong Province, China
| | - Xiuying Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China
| | - Ni Fan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518000, China
| |
Collapse
|
2
|
Miyamoto K, Harata M. Nucleoskeleton proteins for nuclear dynamics. J Biochem 2021; 169:237-241. [PMID: 33479767 DOI: 10.1093/jb/mvab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic nucleus shows organized structures of chromosomes, transcriptional components and their associated proteins. It has been believed that such a dense nuclear environment prevents the formation of a cytoskeleton-like network of protein filaments. However, accumulating evidence suggests that the cell nucleus also possesses structural filamentous components to support nuclear organization and compartments, which are referred to as nucleoskeleton proteins. Nucleoskeleton proteins including lamins and actin influence nuclear dynamics including transcriptional regulation, chromatin organization and DNA damage responses. Furthermore, these nucleoskeleton proteins play a pivotal role in cellular differentiation and animal development. In this commentary, we discuss how nucleoskeleton-based regulatory mechanisms orchestrate nuclear dynamics.
Collapse
Affiliation(s)
- Kei Miyamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|