1
|
Yuan X, Lu Y, Zhang X, Tang Y, Wen S, Lai W, Long H. Effect of autophagy blockage on trigeminal neuropathic pain in rats: Role of microglia. Eur J Oral Sci 2025; 133:e13029. [PMID: 39628135 DOI: 10.1111/eos.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 02/01/2025]
Abstract
Microglia activation and autophagy changes are associated with the regulation of pain, but no study to date has been designed to address whether these features apply to trigeminal neuropathic pain. This study aimed to investigate how alterations in autophagy affect nociceptive behaviors may be associated with microglia activation in the caudal part of the spinal trigeminal nucleus (SpVC) in a rat model of trigeminal neuropathic pain. This model was established by chronic constriction injury of the infraorbital nerve. Autophagy inhibitors and agonists were injected into the lateral ventricle to regulate autophagy. The autophagy markers microtubule-associated protein light chain 3 I (LC3-I), LC3-II, sequestosome1 (p62), and LC-3 were examined by western blotting and/or immunofluorescence. The microglia marker ionized calcium binding adapter molecule 1 (Iba-1) was examined by immunohistochemistry. Nociceptive behavior changes were detected by measuring the mechanical thresholds and face-grooming duration. The results showed that microglia in SpVC were activated, and autophagy flux was blocked in the trigeminal neuropathic pain model. Autophagy agonists inhibited microglia activation and alleviated nociceptive behaviors. In contrast, autophagy inhibitors further activated microglia and exacerbated nociceptive behaviors. In a rat model of trigeminal neuropathic pain, autophagy blockage leads to microglia activation, which significantly influences nociceptive processes.
Collapse
Affiliation(s)
- Xuechun Yuan
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanzhu Lu
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Zhang
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yufei Tang
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shangyou Wen
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenli Lai
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hu Long
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Li L, Li T, Qu X, Sun G, Fu Q, Han G. Stress/cell death pathways, neuroinflammation, and neuropathic pain. Immunol Rev 2024; 321:33-51. [PMID: 37688390 DOI: 10.1111/imr.13275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Neuropathic pain is a common and debilitating modality of chronic pain induced by a lesion or disease of the somatosensory nervous system. Albeit the elucidation of numerous pathophysiological mechanisms and the development of potential treatment compounds, safe and reliable therapies of neuropathic pain remain poor. Multiple stress/cell death pathways have been shown to be implicated in neuroinflammation during neuropathic pain. Here, we summarize the current knowledge of stress/cell death pathways and present an overview of the roles and molecular mechanisms of stress/cell death pathways in neuroinflammation during neuropathic pain, covering intrinsic and extrinsic apoptosis, autophagy, mitophagy, ferroptosis, pyroptosis, necroptosis, and phagoptosis. Small molecule compounds that modulate stress/cell death pathways in alleviating neuropathic pain are discussed mainly based on preclinical neuropathic pain models. These findings will contribute to in-depth understanding of the pathological processes during neuropathic pain as well as bridge the gap between basic and translational research to uncover new neuroprotective interventions.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinyu Qu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guangwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Zheng G, Ren J, Shang L, Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol 2023; 955:175859. [PMID: 37429517 DOI: 10.1016/j.ejphar.2023.175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pain is a ubiquitous and highly concerned clinical symptom, usually caused by peripheral or central nervous injury, tissue damage, or other diseases. The long-term existence of pain can seriously affect daily physical function and quality of life and produce great torture on the physiological and psychological levels. However, the complex pathogenesis of pain involving molecular mechanisms and signaling pathways has not been fully elucidated, and managing pain remains highly challenging. As a result, finding new targets to pursue effective and long-term pain treatment strategies is required and urgent. Autophagy is an intracellular degradation and recycling process that maintains tissue homeostasis and energy supply, which can be cytoprotective and is vital in maintaining neural plasticity and proper nervous system function. Much evidence has shown that autophagy dysregulation is linked to the emergence of neuropathic pain, such as postherpetic neuralgia and cancer-related pain. Autophagy has also been connected to pain caused by osteoarthritis and lumbar disc degeneration. It is worth noting that in recent years, studies on traditional Chinese medicine have also proved that several traditional Chinese medicine monomers involve autophagy in the mechanism of pain relief. Therefore, autophagy can serve as a potential regulatory target to provide new ideas and inspiration for pain management.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
4
|
Wu X, Yu J, Tan B, Chen Z. Research progress on mechanism of Chinese Kaiqiao herbs in management of neuropathic pain. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:523-533. [PMID: 36581573 PMCID: PMC10264986 DOI: 10.3724/zdxbyxb-2022-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
Abstract
The Chinese herbal medicine for Kaiqiao, such as borneol, musk, grassleaf sweetflag rhizome, storax and camphor, have been prescribed in traditional Chinese medicine for thousands of years and now are widely used for neuropathic pain, the main components of which are annular compounds. Studies have shown that their analgesic mechanisms include regulating the expression of γ-aminobutyric acid, N-methyl- D-aspartic acid and other receptors; regulating ion channel function; inhibiting inflammatory response, oxidative stress and apoptosis; regulating neurotransmission and neuronal excitability; and participating in neuroprotection and neurological repair. It is suggested that the mechanisms of action of Kaiqiao herbs in central nervous system analgesia should be further explored; high-quality rapid screening of drug targets may be used, and the targeted agents using the characteristics of Kaiqiao herbs would be developed. This article reviews the research progress on the effect mechanism of traditional Kaiqiao herbs in the treatment of neuropathic pain to provide further research directions.
Collapse
|
5
|
Tian C, Wang Z, Huang L, Liu Y, Wu K, Li Z, Han B, Jiao D, Han X, Zhao Y. One-step fabrication of lidocaine/CalliSpheres ® composites for painless transcatheter arterial embolization. Lab Invest 2022; 20:463. [PMID: 36221084 PMCID: PMC9552470 DOI: 10.1186/s12967-022-03653-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Transcatheter arterial embolization (TAE) is one of the first-line treatments for advanced hepatocellular cancer. The pain caused by TAE is a stark complication, which remains to be prevented by biomedical engineering methods. METHODS Herein, a commercial embolic agent CalliSpheres® bead (CB) was functionally modified with lidocaine (Lid) using an electrostatic self-assembly technique. The products were coded as CB/Lid-n (n = 0, 5, 10, corresponding to the relative content of Lid). The chemical compositions, morphology, drug-loading, and drug-releasing ability of CB/Lid-n were comprehensively investigated. The biocompatibility was determined by hemolysis assay, live/dead cell staining assay, CCK8 assay, immunofluorescence (IHC) staining assay and quantitative real-time PCR. The thermal withdrawal latency (TWL) and edema ratio (ER) were performed to evaluate the analgesia of CB/Lid-n using a plantar inflammation model. A series of histological staining, including immunohistochemistry (IL-6, IL-10, TGF-β and Navi1.7) and TUNEL were conducted to reveal the underlying mechanism of anti-tumor effect of CB/Lid-n on a VX2-tumor bearing model. RESULTS Lid was successfully loaded onto the surface of CalliSpheres® bead, and the average diameter of CalliSpheres® bead increased along with the dosage of Lid. CB/Lid-n exhibited desirable drug-loading ratio, drug-embedding ratio, and sustained drug-release capability. CB/Lid-n had mild toxicity towards L929 cells, while triggered no obvious hemolysis. Furthermore, CB/Lid-n could improve the carrageenan-induced inflammation response micro-environment in vivo and in vitro. We found that CB/Lid-10 could selectively kill tumor by blocking blood supply, inhibiting cell proliferation, and promoting cell apoptosis. CB/Lid-10 could also release Lid to relieve post-operative pain, mainly by remodeling the harsh inflammation micro-environment (IME). CONCLUSIONS In summary, CB/Lid-10 has relatively good biocompatibility and bioactivity, and it can serve as a promising candidate for painless transcatheter arterial embolization.
Collapse
Affiliation(s)
- Chuan Tian
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zijian Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lei Huang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yimin Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kunpeng Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhaonan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bin Han
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanan Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Long D, Chen Y, Qu L, Dong Y. Lidocaine inhibits the proliferation and migration of endometrial cancer cells, and promotes apoptosis by inducing autophagy. Oncol Lett 2022; 24:347. [PMID: 36072001 PMCID: PMC9434716 DOI: 10.3892/ol.2022.13467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
As a gynecological malignancy, endometrial cancer (EC) has a high incidence and mortality rate in women. The aim of the present study was to investigate the mechanism of EC and to identify novel effective treatment methods for this disease. The viability and proliferation of the RL95-2 human endometrial cancer cell line were assessed using Cell Counting Kit-8 assays. Colony formation, wound healing, Transwell, TUNEL and immunofluorescence assays were used to assess the effects of 5, 10 and 15 mM lidocaine on the colony formation, migration, invasiveness, apoptosis and Beclin 1 protein expression of RL95-2 cells, respectively. Furthermore, western blotting was used to analyze the protein expression levels of apoptosis- and autophagy-related proteins. The results demonstrated that lidocaine inhibited the viability, proliferation and migration of EC cells, and promoted apoptosis. Furthermore, lidocaine was demonstrated to induce autophagy and Beclin 1 protein expression in EC cells. In conclusion, lidocaine inhibited the proliferation and migration of EC cells, and promoted apoptosis via autophagy induction, which indicated that lidocaine may be a potential therapeutic drug for the treatment of EC.
Collapse
Affiliation(s)
- Dingde Long
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yayu Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Liangchao Qu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yang Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
7
|
Wu J, Li X, Zhang X, Wang W, You X. What role of the cGAS-STING pathway plays in chronic pain? Front Mol Neurosci 2022; 15:963206. [PMID: 35979145 PMCID: PMC9376357 DOI: 10.3389/fnmol.2022.963206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic pain interferes with daily functioning and is frequently accompanied by depression. Currently, traditional clinic treatments do not produce satisfactory analgesic effects and frequently result in various adverse effects. Pathogen recognition receptors (PRRs) serve as innate cellular sensors of danger signals, sense invading microorganisms, and initiate innate and adaptive immune responses. Among them, cGAS-STING alerts on the presence of both exogenous and endogenous DNA in the cytoplasm, and this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection, and cancer. An increasing numbers of evidence suggest that cGAS-STING pathway involves in the chronic pain process; however, its role remains controversial. In this narrative review, we summarize the recent findings on the involvement of the cGAS-STING pathway in chronic pain, as well as several possible mechanisms underlying its activation. As a new area of research, this review is unique in considering the cGAS-STING pathway in sensory neurons and glial cells as a part of a broader understanding of pain, including potential mechanisms of inflammation, immunity, apoptosis, and autophagy. It will provide new insight into the treatment of pain in the future.
Collapse
Affiliation(s)
- Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiaoxuan Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xingji You
| |
Collapse
|
8
|
Yuan J, Fei Y. Lidocaine ameliorates chronic constriction injury-induced neuropathic pain through regulating M1/M2 microglia polarization. Open Med (Wars) 2022; 17:897-906. [PMID: 35647302 PMCID: PMC9106111 DOI: 10.1515/med-2022-0480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 11/15/2022] Open
Abstract
This study is intended to explore the mechanism that lidocaine ameliorates chronic constriction injury (CCI)-induced neuropathic pain (NP) related to the polarization of M1 and M2 microglia. CCI rats were established by surgery to induce NP. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats were determined. Microglial line HAPI cells were polarized into M1 or M2 cells using lipopolysaccharide (LPS) or interleukin (IL)-4, respectively. Immunofluorescence staining was performed to determine the Iba1/CD86- and Iba1/CD206-positive cells. Markers of M1 and M2 microglia were assessed using flow cytometry. Real-time polymerase chain reaction and enzyme-linked immunosorbent assay were performed to detect the level of mRNA and inflammatory factors. Lidocaine ameliorates CCI-induced NP, evidenced by the markedly increased values of MWT and TWL in NP rats. Lidocaine inhibited M1 microglia polarization but promoted M2 microglia polarization in a rat model of CCI-induced NP. Besides, in the in vitro experiment, lidocaine regulated M1/M2 polarization in LPS- or IL-4-treated HAPI microglia. Lidocaine ameliorates CCI-induced NP by regulating M1/M2 microglia polarization. This study investigated the biological role of lidocaine in regulating NP in rats, which may be helpful for revealing the pathogenic mechanisms of NP and provide a potential therapeutic factor.
Collapse
Affiliation(s)
- Jiaqi Yuan
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Yue Fei
- Department of Anesthesiology, Sir Run Run Shaw Hospital, 3 East Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Cai HQ, Lin XY, Chen HY, Zhang X, Lin YY, Pan SN, Qin MX, Su SY. Direct moxibustion exerts an analgesic effect on cervical spondylotic radiculopathy by increasing autophagy via the Act A/Smads signaling pathway. Brain Behav 2022; 12:e2545. [PMID: 35315239 PMCID: PMC9014986 DOI: 10.1002/brb3.2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Direct moxibustion (DM) is reported to be useful for cervical spondylotic radiculopathy (CSR), but the analgesic mechanism remains unknown. Autophagy plays a protective role in neuronal apoptosis, Act A/Smads signaling pathway has been confirmed to be associated with the activation of autophagy. The study aimed to explore the effect of DM on autophagy in rats with CSR and the involvement of Act A/Smads signaling pathway. METHODS Rats were randomly divided into Sham, CSR, CSR + DM, CSR + DM + 3-MA (PI3K inhibitor), and CSR + DM + SB (Act A inhibitor) group. Three days after establishment of CSR model with a fish line inserted under the axilla of the nerve roots, DM at Dazhui (GV14) was performed six times once for seven consecutive days. Western blot and immunofluorescence staining were used to observe the expression of the neuronal autophagy molecule LC3II/I, Atg7, and Act A/Smads signaling molecule Act A, p-Smad2, and p-Smad3. Bcl-2/Bax mRNA expression was measured by real time PCR. RESULTS DM improved the pain threshold and motor function of CSR rats and promoted the expression of Act A, p-Smad2, p-Smad3, LC3II/I, and Atg7 in the entrapped-nerve root spinal dorsal horn. DM reduced the expression of Bax mRNA and decreased the number of apoptotic neurons. 3-MA and Act A inhibitor SB suppressed the expression of above-mentioned proteins and reduced the protective effect of DM on apoptotic neurons. CONCLUSION DM exerts analgesic effects by regulating the autophagy to reduce cell apoptosis and repair nerve injury, and this feature may be related to the Act A/Smads signaling pathway.
Collapse
Affiliation(s)
- Hui-Qian Cai
- Department of Rehabilitation, The First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| | - Xin-Ying Lin
- Department of First School of Clinical Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| | - Hai-Yan Chen
- Department of Nursing, The First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| | - Xi Zhang
- Department of First School of Clinical Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| | - Yuan-Yuan Lin
- Department of First School of Clinical Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| | - Shan-Na Pan
- Department of First School of Clinical Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| | - Mei-Xiang Qin
- Department of First School of Clinical Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| | - Sheng-Yong Su
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, China
| |
Collapse
|
10
|
Liao MF, Lu KT, Hsu JL, Lee CH, Cheng MY, Ro LS. The Role of Autophagy and Apoptosis in Neuropathic Pain Formation. Int J Mol Sci 2022; 23:2685. [PMID: 35269822 PMCID: PMC8910267 DOI: 10.3390/ijms23052685] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain indicates pain caused by damage to the somatosensory system and is difficult to manage and treat. A new treatment strategy urgently needs to be developed. Both autophagy and apoptosis are critical adaptive mechanisms when neurons encounter stress or damage. Recent studies have shown that, after nerve damage, both autophagic and apoptotic activities in the injured nerve, dorsal root ganglia, and spinal dorsal horn change over time. Many studies have shown that upregulated autophagic activities may help myelin clearance, promote nerve regeneration, and attenuate pain behavior. On the other hand, there is no direct evidence that the inhibition of apoptotic activities in the injured neurons can attenuate pain behavior. Most studies have only shown that agents can simultaneously attenuate pain behavior and inhibit apoptotic activities in the injured dorsal root ganglia. Autophagy and apoptosis can crosstalk with each other through various proteins and proinflammatory cytokine expressions. Proinflammatory cytokines can promote both autophagic/apoptotic activities and neuropathic pain formation, whereas autophagy can inhibit proinflammatory cytokine activities and further attenuate pain behaviors. Thus, agents that can enhance autophagic activities but suppress apoptotic activities on the injured nerve and dorsal root ganglia can treat neuropathic pain. Here, we summarized the evolving changes in apoptotic and autophagic activities in the injured nerve, dorsal root ganglia, spinal cord, and brain after nerve damage. This review may help in further understanding the treatment strategy for neuropathic pain during nerve injury by modulating apoptotic/autophagic activities and proinflammatory cytokines in the nervous system.
Collapse
Affiliation(s)
- Ming-Feng Liao
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Kwok-Tung Lu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Jung-Lung Hsu
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Chang Gung University, New Taipei City 236, Taiwan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 110, Taiwan
- Brain and Consciousness Research Center, Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chih-Hong Lee
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| | - Mei-Yun Cheng
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| | - Long-Sun Ro
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| |
Collapse
|