1
|
Odfalk KF, Wickline JL, Smith S, Dobrowolski R, Hopp SC. Hippocampal TMEM55B overexpression in the 5XFAD mouse model of Alzheimer's disease. Hippocampus 2024; 34:29-35. [PMID: 37961834 PMCID: PMC10873028 DOI: 10.1002/hipo.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Dysfunction of the endosomal-lysosomal network is a notable feature of Alzheimer's disease (AD) pathology. Dysfunctional endo-lysosomal vacuoles accumulate in dystrophic neurites surrounding amyloid β (Aβ) plaques and may be involved in the pathogenesis and progression of Aβ aggregates. Trafficking and thus maturation of these dysfunctional vacuoles is disrupted in the vicinity of Aβ plaques. Transmembrane protein 55B (TMEM55B), also known as phosphatidylinositol-4,5-bisphosphate 4-phosphatase 1 (PIP4P1) is an endo-lysosomal membrane protein that is necessary for appropriate trafficking of endo-lysosomes. The present study tested whether overexpression of TMEM55B in the hippocampus could prevent plaque-associated axonal accumulation of dysfunctional endo-lysosomes, reduce Aβ plaque load, and prevent hippocampal-dependent learning and memory deficits in the 5XFAD mouse models of Aβ plaque pathology. Immunohistochemical analyses revealed a modest but significant reduction in the accumulation of endo-lysosomes in dystrophic neurites surrounding Aβ plaques, but there was no change in hippocampal-dependent memory or plaque load. Overall, these data indicate a potential role for TMEM55B in reducing endo-lysosomal dysfunction during AD-like Aβ pathology.
Collapse
Affiliation(s)
- Kristian F. Odfalk
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| | - Jessica L. Wickline
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| | - Sabrina Smith
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| | - Radek Dobrowolski
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Rutgers University
| | - Sarah C. Hopp
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| |
Collapse
|
2
|
Wallings RL, Mark JR, Staley HA, Gillett DA, Neighbarger N, Kordasiewicz H, Hirst WD, Tansey MG. ASO-mediated knockdown or kinase inhibition of G2019S-Lrrk2 modulates lysosomal tubule-associated antigen presentation in macrophages. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102064. [PMID: 38028198 PMCID: PMC10661462 DOI: 10.1016/j.omtn.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Genetic variation around the LRRK2 gene affects risk for both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD therapeutics with LRRK2 antisense oligonucleotides (ASOs) now moving toward clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Here it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR-dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knockdown of mutant Lrrk2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targeting therapies with systemic activity may have therapeutic value with regard to mutant LRRK2, but deleterious effects on the peripheral immune system, such as altered pathogen control in these cells, should be considered when reducing levels of non-mutant LRRK2.
Collapse
Affiliation(s)
- Rebecca L. Wallings
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Julian R. Mark
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Hannah A. Staley
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Drew A. Gillett
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Noelle Neighbarger
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Holly Kordasiewicz
- Neurology, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Warren D. Hirst
- Neurodegenerative Diseases Research Unit, Biogen, 115 Broadway, Cambridge, MA 02142, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Department of Neurology and Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| |
Collapse
|
3
|
Wallings RL, Mark JR, Staley HA, Gillett DA, Neighbarger N, Kordasiewicz H, Hirst WD, Tansey MG. Totally tubular: ASO-mediated knock-down of G2019S -Lrrk2 modulates lysosomal tubule-associated antigen presentation in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549028. [PMID: 37503274 PMCID: PMC10370014 DOI: 10.1101/2023.07.14.549028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD-therapeutics with LRRK2 antisense oligonucleotides (ASOs) now in clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Furthermore, the precise role of LRRK2 in immune cells is currently unknown, although it has been suggested that LRRK2-mediated lysosomal function may be crucial to immune responses. Here, it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knock down of mutant Lrrk 2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targetting therapies may have therapeutic value with regards to mutant LRRK2 but deleterious effects on the peripheral immune system, such as altered pathogen control and infection resolution.
Collapse
|