Suzuki T, Sobu Y, Hata S. γ-Secretase structure and activity are modified by alterations in its membrane localization and ambient environment.
J Biochem 2021;
171:253-256. [PMID:
34865063 DOI:
10.1093/jb/mvab132]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 01/25/2023] Open
Abstract
γ-Secretase cleaves type I transmembrane proteins in a hydrophobic membrane environment following ectodomain shedding. Mutations in PSEN genes, encoding the catalytic subunits of γ-secretase, presenilins, are the most common cause of familial Alzheimer's disease (AD). Pathogenic mutations in PSEN genes increase production of longer and neurotoxic amyloid-β (Aβ) by intramembrane cleavage of membrane-associated amyloid-β protein precursor (APP) carboxy-terminal fragment β (APP CTFβ), which is generated via primary cleavage of APP by β-site APP cleaving enzyme 1. The longer Aβ is prone to aggregate and accumulate in the brain, however, the accumulation of Aβ in brain is also a pathological feature of sporadic AD. Increased pathogenic Aβ generation, even in the absence of pathogenic PSEN gene mutations, is one of proposed mechanisms for sporadic AD pathogenesis. γ-Secretase digests substrates in the transmembrane region, generating Aβ peptide intermediates of various lengths. The end-products, shorter Aβ40 and Aβ38 peptides, are less neurotoxic, whereas PSEN gene mutations increase the production ratio of longer, neurotoxic Aβ species such as Aβ42, an intermediate in Aβ38 production. γ-Secretase activity or structures is altered because of its aberrant membrane localization or changes in the ambient environment such as luminal acidification. Interestingly, γ-secretase has a pH sensor in presenilins.
Collapse