1
|
Hussain HZF, Ragucci S, Gentile MT, Alberico L, Landi N, Bosso A, Pizzo E, Saviano M, Pedone PV, Citores L, Woodrow P, Di Maro A. Melleatin, an antibiofilm multitasking protein with rRNA N-glycosylase and nuclease activity from Armillaria mellea fruiting bodies. Int J Biol Macromol 2025; 286:138447. [PMID: 39647756 DOI: 10.1016/j.ijbiomac.2024.138447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Several studies highlight the identification of some enzymes with additional abilities, especially those involved in metabolic pathways and/or host defence processes, classified as multitasking proteins. In this context, we report the characterization of melleatin (17.5-kDa), a multitasking enzyme isolated from Armillaria mellea fruiting bodies. Melleatin inhibits protein synthesis and displayed unexpected enzymatic action. Indeed, the structural characterization (primary structure and 3D model) showed that melleatin belongs to the His-Me finger endonucleases superfamily possessing a fold like the biofilm-dispersing nuclease NucB, the latter isolated from the marine Bacillus licheniformis. The enzymatic studies on melleatin showed that this enzyme is able to: i) inhibit protein synthesis in a rabbit reticulocyte lysate system (IC50 value 16.48 ± 3.71 nM); ii) damage rabbit and Trichoderma harzianum ribosomes as a ribosome inactivating protein (β-fragment release after Endo's assay); and iii) hydrolyse DNA. Functionally, melleatin has antibiofilm action and antifungal activity towards T. harzianum and Botrytis cinerea affecting fungal ribosomes, while it does not exhibit cytotoxicity against different human cell lines, being unable to enter the cells. Overall, melleatin represents a novel multitasking protein that could be used as a biotechnological tool for its antibiofilm and antifungal activity or as a toxic component of biomedical bioconstructs.
Collapse
Affiliation(s)
- Hafiza Z F Hussain
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Laura Alberico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy; Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100 Caserta, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples 'Federico II', Via Cinthia 26, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples 'Federico II', Via Cinthia 26, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples 'Federico II', 80126 Naples, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
2
|
García-Montoya C, García-Linares S, Heras-Márquez D, Majnik M, Laxalde-Fernández D, Amigot-Sánchez R, Martínez-Del-Pozo Á, Palacios-Ortega J. The interaction of the ribotoxin α-sarcin with complex model lipid vesicles. Arch Biochem Biophys 2024; 751:109836. [PMID: 38000493 DOI: 10.1016/j.abb.2023.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Fungal ribotoxins are extracellular RNases that inactivate ribosomes by cleaving a single phosphodiester bond at the universally conserved sarcin-ricin loop of the large rRNA. However, to reach the ribosomes, they need to cross the plasma membrane. It is there where these toxins show their cellular specificity, being especially active against tumoral or virus-infected cells. Previous studies have shown that fungal ribotoxins interact with negatively charged membranes, typically containing phosphatidylserine or phosphatidylglycerol. This ability is rooted on their long, non-structured, positively charged loops, and its N-terminal β-hairpin. However, its effect on complex lipid mixtures, including sphingophospholipids or cholesterol, remains poorly studied. Here, wild-type α-sarcin was used to evaluate its interaction with a variety of membranes not assayed before, which resemble much more closely mammalian cell membranes. The results confirm that α-sarcin is particularly sensitive to charge density on the vesicle surface. Its ability to induce vesicle aggregation is strongly influenced by both the lipid headgroup and the degree of saturation of the fatty acid chains. Acyl chain length is indeed particularly important for lipid mixing. Finally, cholesterol plays an important role in diluting the concentration of available negative charges and modulates the ability of α-sarcin to cross the membrane.
Collapse
Affiliation(s)
- Carmen García-Montoya
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Diego Heras-Márquez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Manca Majnik
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - Rafael Amigot-Sánchez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
3
|
Bosso A, Tortora F, Culurciello R, Di Nardo I, Pistorio V, Carraturo F, Colecchia A, Di Girolamo R, Cafaro V, Notomista E, Ingenito R, Pizzo E. Simultaneous Irradiation with UV-A, -B, and -C Lights Promotes Effective Decontamination of Planktonic and Sessile Bacteria: A Pilot Study. Int J Mol Sci 2023; 24:12951. [PMID: 37629131 PMCID: PMC10454392 DOI: 10.3390/ijms241612951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Surfaces in highly anthropized environments are frequently contaminated by both harmless and pathogenic bacteria. Accidental contact between these contaminated surfaces and people could contribute to uncontrolled or even dangerous microbial diffusion. Among all possible solutions useful to achieve effective disinfection, ultraviolet irradiations (UV) emerge as one of the most "Green" technologies since they can inactivate microorganisms via the formation of DNA/RNA dimers, avoiding the environmental pollution associated with the use of chemical sanitizers. To date, mainly UV-C irradiation has been used for decontamination purposes, but in this study, we investigated the cytotoxic potential on contaminated surfaces of combined UV radiations spanning the UV-A, UV-B, and UV-C spectrums, obtained with an innovative UV lamp never conceived so far by analyzing its effect on a large panel of collection and environmental strains, further examining any possible adverse effects on eukaryotic cells. We found that this novel device shows a significant efficacy on different planktonic and sessile bacteria, and, in addition, it is compatible with eukaryotic skin cells for short exposure times. The collected data strongly suggest this new lamp as a useful device for fast and routine decontamination of different environments to ensure appropriate sterilization procedures.
Collapse
Affiliation(s)
- Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Francesca Tortora
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Valeria Pistorio
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Inserm, 75012 Paris, France;
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
- Hygiene Laboratory, Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80146 Naples, Italy
| | - Andrea Colecchia
- Physics Department “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy;
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | | | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
4
|
Ayimbila F, Keawsompong S. Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Curr Nutr Rep 2023; 12:290-307. [PMID: 37032416 PMCID: PMC10088739 DOI: 10.1007/s13668-023-00468-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE OF REVIEW Global concerns about population growth, economic, and nutritional transitions and health have led to the search for a low-cost protein alternative to animal origins. This review provides an overview of the viability of exploring mushroom protein as a future protein alternative considering the nutritional value, quality, digestibility, and biological benefits. RECENT FINDINGS Plant proteins are commonly used as alternatives to animal proteins, but the majority of them are low in quality due to a lack of one or more essential amino acids. Edible mushroom proteins usually have a complete essential amino acid profile, meet dietary requirements, and provide economic advantages over animal and plant sources. Mushroom proteins may provide health advantages by eliciting antioxidant, antitumor, angiotensin-converting enzyme (ACE), inhibitory and antimicrobial properties over animal proteins. Protein concentrates, hydrolysates, and peptides from mushrooms are being used to improve human health. Also, edible mushrooms can be used to fortify traditional food to increase protein value and functional qualities. These characteristics highlight mushroom proteins as inexpensive, high-quality proteins that can be used as a meat alternative, as pharmaceuticals, and as treatments to alleviate malnutrition. Edible mushroom proteins are high in quality, low in cost, widely available, and meet environmental and social requirements, making them suitable as sustainable alternative proteins.
Collapse
Affiliation(s)
- Francis Ayimbila
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Suttipun Keawsompong
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand.
| |
Collapse
|
5
|
The impact of N-glycosylation on the properties of the antimicrobial peptide LL-III. Sci Rep 2023; 13:3733. [PMID: 36878924 PMCID: PMC9988962 DOI: 10.1038/s41598-023-29984-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The misuse of antibiotics has led to the emergence of drug-resistant pathogens. Antimicrobial peptides (AMPs) may represent valuable alternative to antibiotics; nevertheless, the easy degradation due to environmental stress and proteolytic enzyme action, limits their use. So far, different strategies have been developed to overcome this drawback. Among them, glycosylation of AMPs represents a promising approach. In this work, we synthesized and characterized the N-glycosilated form of the antimicrobial peptide LL-III (g-LL-III). The N-acetylglucosamine (NAG) was covalently linked to the Asn residue and the interaction of g-LL-III with bacterial model membranes, together with its resistance to proteases, were investigated. Glycosylation did not affect the peptide mechanism of action and its biological activity against both bacteria and eukaryotic cells. Interestingly, a higher resistance to the activity of proteolytic enzymes was achieved. The reported results pave the way for the successful application of AMPs in medicine and biotechnological fields.
Collapse
|
6
|
Selective light-up of dimeric G-quadruplex forming aptamers for efficient VEGF165 detection. Int J Biol Macromol 2022; 224:344-357. [DOI: 10.1016/j.ijbiomac.2022.10.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
7
|
Conformational stability of ageritin, a metal binding ribotoxin-like protein of fungal origin. Int J Biol Macromol 2022; 221:1012-1021. [PMID: 36113585 DOI: 10.1016/j.ijbiomac.2022.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
Ageritin is a ribotoxin-like protein of biotechnological interest, belonging to a family of ribonucleases from edible mushrooms. Its enzymatic activity is explicated through the hydrolysis of a single phosphodiester bond, located in the sarcin/ricin loop of ribosomes. Unlike other ribotoxins, ageritin activity requires divalent cations (Zn2+). Here we investigated the conformational stability of ageritin in the pH range 4.0-7.4, using calorimetric and spectroscopic techniques. We observed a high protein thermal stability at all pHs with a denaturation temperature of 78 °C. At pH 5.0 we calculated a value of 36 kJ mol-1 for the unfolding Gibbs energy at 25 °C. We also analysed the thermodynamic and catalytic behaviour of S-pyridylethylated form, obtained by alkylating the single Cys18 residue, which is predicted to bind Zn2+. We show that this form possesses the same activity and structure of ageritin, but lower stability. In fact, the corresponding values of 52 °C and 14 kJ mol-1 were found. Conservation of activity is consistent with the location of alkylation site on the opposite site of the catalytic site cleft. Inasmuch as Cys18 is part of a structurally stabilizing zinc-binding site, disrupted by cysteine alkylation, our results point to an important role of metal ions in ageritin stability.
Collapse
|
8
|
Landi N, Grundner M, Ragucci S, Pavšič M, Mravinec M, Pedone PV, Sepčić K, Di Maro A. Characterization and cytotoxic activity of ribotoxin-like proteins from the edible mushroom Pleurotus eryngii. Food Chem 2022; 396:133655. [PMID: 35868286 DOI: 10.1016/j.foodchem.2022.133655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/15/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
Abstract
Ribotoxin-like proteins (RL-Ps) represent a novel specific ribonuclease family found in edible mushrooms and are able to inhibit protein synthesis. Here, we report the characterization and cytotoxic effects of four novel RL-Ps, named eryngitins, isolated from fruiting bodies of the king oyster mushroom (Pleurotus eryngii). These proteins induced formation of α-fragment from rabbit ribosomes, characteristic of their enzymatic action. The two 15 kDa eryngitins (3 and 4) are considerably more thermostable than the 21 kDa ones (1 and 2), however their overall structural features, as determined by far-UV CD spectrometry, are similar. Complete in vitro digestibility by pepsin-trypsin, and lack of cytotoxicity towards human HUVEC cells suggest low toxicity of eryngitins, if ingested. However, eryngitins exhibit cytotoxic action against insect Sf9 cells, suggesting their possible use in biotechnological applications as bioinsecticides. This cytotoxicity was not enhanced in the presence of cytolytic protein complexes based on aegerolysin proteins from Pleurotus mushrooms.
Collapse
Affiliation(s)
- Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy
| | - Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Mravinec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy.
| |
Collapse
|
9
|
Ageritin-The Ribotoxin-like Protein from Poplar Mushroom ( Cyclocybe aegerita) Sensitizes Primary Glioblastoma Cells to Conventional Temozolomide Chemotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082385. [PMID: 35458581 PMCID: PMC9032345 DOI: 10.3390/molecules27082385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/29/2022]
Abstract
Here, we propose Ageritin, the prototype of the ribotoxin-like protein family, as an adjuvant treatment to control the growth of NULU and ZAR, two primary human glioblastoma cell lines, which exhibit a pharmacoresistance phenotype. Ageritin is able to inhibit NULU and ZAR growth with an IC50 of 0.53 ± 0.29 µM and 0.42 ± 0.49 µM, respectively. In this study, Ageritin treatment highlighted a macroscopic genotoxic response through the formation of micronuclei, which represents the morphological manifestation of genomic chaos induced by this toxin. DNA damage was not associated with either the deregulation of DNA repair enzymes (i.e., ATM and DNA-PK), as demonstrated by quantitative PCR, or reactive oxygen species. Indeed, the pretreatment of the most responsive cell line ZAR with the ROS scavenger N-acetylcysteine (NAC) did not follow the reverse cytotoxic effect of Ageritin, suggesting that this protein is not involved in cellular oxidative stress. Vice versa, Ageritin pretreatment strongly enhanced the sensitivity to temozolomide (TMZ) and inhibited MGMT protein expression, restoring the sensitivity to temozolomide. Overall, Ageritin could be considered as a possible innovative glioblastoma treatment, directly damaging DNA and downregulating the MGMT DNA repair protein. Finally, we verified the proteolysis susceptibility of Ageritin using an in vitro digestion system, and considered the future perspective use of this toxin as a bioconjugate in biomedicine.
Collapse
|
10
|
DNA Binding Mode Analysis of a Core-Extended Naphthalene Diimide as a Conformation-Sensitive Fluorescent Probe of G-Quadruplex Structures. Int J Mol Sci 2021; 22:ijms221910624. [PMID: 34638964 PMCID: PMC8508963 DOI: 10.3390/ijms221910624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
G-quadruplex existence was proved in cells by using both antibodies and small molecule fluorescent probes. However, the G-quadruplex probes designed thus far are structure- but not conformation-specific. Recently, a core-extended naphthalene diimide (cex-NDI) was designed and found to provide fluorescent signals of markedly different intensities when bound to G-quadruplexes of different conformations or duplexes. Aiming at evaluating how the fluorescence behaviour of this compound is associated with specific binding modes to the different DNA targets, cex-NDI was here studied in its interaction with hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex models by biophysical techniques, molecular docking, and biological assays. cex-NDI showed different binding modes associated with different amounts of stacking interactions with the three DNA targets. The preferential binding sites were the groove, outer quartet, or intercalative site of the hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex, respectively. Interestingly, our data show that the fluorescence intensity of DNA-bound cex-NDI correlates with the amount of stacking interactions formed by the ligand with each DNA target, thus providing the rationale behind the conformation-sensitive properties of cex-NDI and supporting its use as a fluorescent probe of G-quadruplex structures. Notably, biological assays proved that cex-NDI mainly localizes in the G-quadruplex-rich nuclei of cancer cells.
Collapse
|