1
|
Ahmed DH, El-Beih NM, El-Hussieny EA, El-Sayed WM. Zinc Oxide Nanoparticles Induced Testicular Toxicity Through Inflammation and Reducing Testosterone and Cell Viability in Adult Male Rats. Biol Trace Elem Res 2024:10.1007/s12011-024-04330-1. [PMID: 39134772 DOI: 10.1007/s12011-024-04330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/27/2024] [Indexed: 10/06/2024]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have wide applications in daily life. Therefore, there is growing interest in the potential harmful impacts of these particles on human health. The present study was conducted to investigate the potential toxic effects of ZnO NPs (40 and 70 nm) compared to ZnO on the testes of rats. ZnO NPs were synthesized and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Adult male rats were randomly divided into four groups (n = 8): Group I (control), Group II (ZnO) received daily oral administration of ZnO (50 mg/kg), and Groups III and IV received daily oral administration of ZnO NPs of 40 nm or 70 nm at 50 mg/kg, respectively. All treatments continued for 50 consecutive days. ZnO and ZnO NPs reduced body and testis weights, sperm count and motility, serum luteinizing hormone (LH) and testosterone levels, testicular cytochrome p450 17A1 (CYP17A1) and cytochrome p450 1B1 (CYP1B1) concentrations, and the expression of p53 and cdk1. These treatments elevated testicular myeloperoxidase and serum acid phosphatase activities as well as sperm abnormalities. ZnO NPs reduced LH levels, which decreased CYP17A1 and CYP1B1, resulting in reduced synthesis of testosterone. ZnO NPs enhanced testicular inflammation and reduced cell viability. All these effects were manifested as reduced sperm motility and increased sperm deformities. Compared to macromolecules, nanoparticles exhibited significantly higher toxicity. The larger diameter ZnO NPs had more profound toxicity than the smaller-sized particles.
Collapse
Affiliation(s)
- Dina H Ahmed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Nadia M El-Beih
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Enas A El-Hussieny
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Gao Y, Jian L, Lu W, Xue Y, Machaty Z, Luo H. Vitamin E can promote spermatogenesis by regulating the expression of proteins associated with the plasma membranes and protamine biosynthesis. Gene 2021; 773:145364. [PMID: 33359122 DOI: 10.1016/j.gene.2020.145364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/31/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022]
Abstract
Vitamin E is generally believed to promote the production of ovine sperm mainly through its antioxidant effect. Our previous studies have shown that some non-antioxidant genes may also be key in mediating this process. The objective of this study was to identify key candidate proteins that were differentially expressed in response to a treatment with Vitamin E. Prepubertal ovine testicular cells were isolated and divided into two groups. They were either treated with 800 μM Vitamin E (based on our previous results) or used as a non-treated control. After 24 h, all the cells were harvested for proteomic analysis. We found 115 differentially expressed proteins, 4 of which were up-regulated and 111 were down-regulated. A GO term enrichment analysis identified 127 Biological Process, 63 Cell Component and 26 Molecular Function terms that were enriched. Within those terms, 13, 11 and 26 terms were significantly enriched, respectively. Terms related to membrane and enzyme activity including the inner acrosomal membrane, signal peptidase complex, cysteine-type endopeptidase activity, etc., were also markedly enriched, while none of the KEGG pathways were enriched. We found that many of the differentially expressed proteins, such as CD46 (membrane cofactor protein), FLNA (Filamin A), DYSF (Dysferlin), IFT20 (Intraflagellar transport 20), SPCS1 (Signal peptidase complex subunit 1) and SPCS3 (Signal peptidase complex subunit 3) were related to the acrosomal and plasma membranes. A parallel reaction monitoring (PRM) analysis verified that Vitamin E improved spermatogenesis by regulating the expression of FLNA, SPCS3, YBX3 and RARS, proteins that are associated with the plasma membranes and protamine biosynthesis of the spermatozoa.
Collapse
Affiliation(s)
- Yuefeng Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Luyang Jian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Wei Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ying Xue
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Dai X, Hong L, Shen H, Du Q, Ye Q, Chen X, Zhang J. Estradiol-induced senescence of hypothalamic astrocytes contributes to aging-related reproductive function declines in female mice. Aging (Albany NY) 2020; 12:6089-6108. [PMID: 32259796 PMCID: PMC7185128 DOI: 10.18632/aging.103008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Hypothalamic astrocytes are important contributors that activate gonadotropin-releasing hormone (GnRH) neurons and promote GnRH/LH (luteinizing hormone) surge. However, the potential roles and mechanisms of astrocytes during the early reproductive decline remain obscure. The current study reported that, in intact middle-aged female mice, astrocytes within the hypothalamic RP3V accumulated senescence-related markers with increasing age. It employed an ovariectomized animal model and a cell model receiving estrogen intervention to confirm the estrogen-induced senescence of hypothalamic astrocytes. It found that estrogen metabolites may be an important factor for the estrogen-induced astrocyte senescence. In vitro molecular analysis revealed that ovarian estradiol activated PKA and up-regulated CYPs expression, metabolizing estradiol into 2-OHE2 and 4-OHE2. Of note, in middle-aged mice, the progesterone synthesis and the ability to promote GnRH release were significantly reduced. Besides, the expression of growth factors decreased and the mRNA levels of proinflammatory cytokines significantly increased in the aging astrocytes. The findings confirm that ovarian estradiol induces the senescence of hypothalamic astrocytes and that the senescent astrocytes compromise the regulation of progesterone synthesis and GnRH secretion, which may contribute to the aging-related declines in female reproductive function.
Collapse
Affiliation(s)
- Xiaoman Dai
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Luyan Hong
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, Fujian, China.,Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou 341000, Jiangxi. China
| | - Hui Shen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Qiang Du
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, FujianChina
| | - Qinyong Ye
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Xiaochun Chen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Jing Zhang
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, Fujian, China
| |
Collapse
|
4
|
KMT2D/MLL2 inactivation is associated with recurrence in adult-type granulosa cell tumors of the ovary. Nat Commun 2018; 9:2496. [PMID: 29950560 PMCID: PMC6021426 DOI: 10.1038/s41467-018-04950-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022] Open
Abstract
Adult-type granulosa cell tumors of the ovary (aGCTs) are rare gynecologic malignancies that exhibit a high frequency of somatic FOXL2 c.C402G (p.Cys134Trp) mutation. Treatment of relapsed aGCT remains a significant clinical challenge. Here we show, using whole-exome and cancer gene panel sequencing of 79 aGCTs from two independent cohorts, that truncating mutation of the histone lysine methyltransferase gene KMT2D (also known as MLL2) is a recurrent somatic event in aGCT. Mono-allelic KMT2D-truncating mutations are more frequent in recurrent (10/44, 23%) compared with primary (1/35, 3%) aGCTs (p = 0.02, two-sided Fisher's exact test). IHC detects additional non-KMT2D-mutated aGCTs with loss of nuclear KMT2D expression, suggesting that non-genetic KMT2D inactivation may occur in this tumor type. These findings identify KMT2D inactivation as a novel driver event in aGCTs and suggest that mutation of this gene may increase the risk of disease recurrence.
Collapse
|
5
|
Ouyang J, Hu D, Wang B, Shi T, Ma X, Li H, Wang X, Zhang X. Differential effects of down-regulated steroidogenic factor-1 on basal and angiotensin II-induced aldosterone secretion. J Endocrinol Invest 2011; 34:671-5. [PMID: 21169726 DOI: 10.3275/7413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aldosterone synthase (CYP11B2) is responsible for the final step in aldosterone synthesis and is importantly regulated by angiotensin-II (Ang II) through diverse pathways. However, under pathological conditions, such as in hyperaldosteronism, the regulation becomes disordered. The transcription factor steroidogenic factor-1 (SF-1) is important in regulating the endocrine system and is overexpressed in aldosterone-producing adenoma (APA), a common cause of hyperaldosteronism. Overexpression of SF-1 has been extensively studied, but little in-depth information is available regarding the effects of inhibitory SF-1 on CYP11B2 and Ang II. In this paper, we have investigated the roles of down-regulated SF-1 in basal and Ang II-induced CYP11B2 expression using SF-1-specific short hairpin RNA. Inhibitory SF-1 was found to decrease the sensitivity of CYP11B2 and aldosterone to Ang II stimulation, whereas a down-regulation of SF-1 enhanced basal CYP11B2 expression and aldosterone production in H295R cells. Considering these differential effects of SF-1 on aldosterone production, these results might provide a new insight into the understanding of hyperaldosteronism.
Collapse
Affiliation(s)
- J Ouyang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yang HM, Do HJ, Kim DK, Park JK, Chang WK, Chung HM, Choi SY, Kim JH. Transcriptional regulation of human Oct4 by steroidogenic factor-1. J Cell Biochem 2007; 101:1198-209. [PMID: 17226773 DOI: 10.1002/jcb.21244] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oct4 encodes a transcription factor that is involved in the maintenance of self-renewal in stem cells. Recently, the molecular mechanisms that regulate Oct4 expression have come under investigation. In this study, we demonstrate that the orphan nuclear receptor steroidogenic factor-1 (SF-1) behaves as a transcriptional activator of human Oct4 (hOct4) through direct interaction with a SF-1 binding element in the hOct4 proximal promoter. We found that Oct4 and SF-1 were co-expressed in undifferentiated human embryonal carcinoma NCCIT cells and downregulated during retinoic acid-mediated differentiation. We examined the functional role played by SF-1 in regulation of hOct4 transcription using a luciferase reporter assay and Western blot analysis. Overexpression of SF-1 increased up to about threefold hOct4 promoter activity and endogenous hOct4 protein expression. Sequence analysis of the hOct4 promoter revealed that the transcriptional activity was closely linked to Conserved Regions 1 (CR1) and 2 (CR2), which contain three putative SF-1-binding sites (1st, 2nd, and 3rd SF-1). Binding assays and mutagenesis of binding sites indicated that the 1st and 2nd SF-1 elements (in CR1 and CR2, respectively) might be important cis-regulatory elements in hOct4 promoter activity. However, differences in response to SF-1 overexpression between wild-type and mutant hOct4 promoters revealed that the 1st SF-1 element is the key binding site for SF-1-mediated transcriptional activation. Thus, our data indicate that SF-1 plays a crucial role in the regulation of hOct4 transcription through direct binding to the 1st SF-1 in CR1 of the hOct4 proximal promoter.
Collapse
|
7
|
Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 2006; 66:9090-8. [PMID: 16982751 DOI: 10.1158/0008-5472.can-06-1403] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that regulate gene expression through translational repression or mRNA cleavage. Here, we found that cytochrome P450 (CYP), a superfamily of drug-metabolizing enzymes, is a target of miRNA. Human CYP1B1, which is highly expressed in estrogen target tissues, catalyzes the metabolic activation of various procarcinogens and the 4-hydroxylation of 17beta-estradiol. CYP1B1 protein is abundant in cancerous tissues. We identified a near-perfect matching sequence with miR-27b in the 3'-untranslated region of human CYP1B1. Luciferase assays revealed that the reporter activity of the plasmid containing the miR-27b recognition element was decreased in MCF-7 cells (miR-27 positive) but not in Jurkat cells (miR-27b negative). Exogenously expressed miR-27b could decrease the luciferase activity in Jurkat cells. In MCF-7 cells, the antisense oligoribonucleotide for miR-27b restored the luciferase activity and increased the protein level and enzymatic activity of endogenous CYP1B1. These results suggested that human CYP1B1 is post-transcriptionally regulated by miR-27b. The expression levels of miR-27b and CYP1B1 protein in breast cancerous and adjacent noncancerous tissues from 24 patients were evaluated. In most patients, the expression level of miR-27b was decreased in cancerous tissues, accompanied by a high level of CYP1B1 protein. A significant inverse association was observed between the expression levels of miR-27b and CYP1B1 protein. Thus, the decreased expression of miR-27b would be one of causes of the high expression of CYP1B1 protein in cancerous tissues. This is the first study to show that miRNAs regulate not only essential genes for physiologic events but also drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Yuki Tsuchiya
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | |
Collapse
|