Takei T, Tsumoto K, Yoshino M, Kojima S, Yazaki K, Ueda T, Takei T, Arisaka F, Miura KI. Role of positions e and g in the fibrous assembly formation of an amphipathic α-helix-forming polypeptide.
Biopolymers 2016;
102:260-72. [PMID:
24615557 DOI:
10.1002/bip.22479]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/02/2014] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
We previously characterized α3, a polypeptide that has a three times repeated sequence of seven amino acids (abcdefg: LETLAKA) and forms fibrous assemblies composed of amphipathic α-helices. Upon comparison of the amino acid sequences of α3 with other α-helix forming polypeptides, we proposed that the fibrous assemblies were formed due to the alanine (Ala) residues at positions e and g. Here, we characterized seven α3 analog polypeptides with serine (Ser), glycine (Gly), or charged residues substituted for Ala at positions e and g. The α-helix forming abilities of the substituted polypeptides were less than that of α3. The polypeptides with amino acid substitutions at position g and the polypeptide KEα3, in which Ala was substituted with charged amino acids, formed few fibrous assemblies. In contrast, polypeptides with Ala replaced by Ser at position e formed β-sheets under several conditions. These results show that Ala residues at position e and particularly at position g are involved in the formation of fibrous assemblies.
Collapse