1
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Sadovskaya I, Guérardel Y. Simple Protocol to Purify Cell Wall Polysaccharide from Gram-Positive Bacteria and Assess Its Structural Integrity. Methods Mol Biol 2019; 1954:37-45. [PMID: 30864122 DOI: 10.1007/978-1-4939-9154-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell wall polysaccharides (CWPS), which are usually covalently bound to the peptidoglycan and are closely associated with the cell wall, are considered as ubiquitous components of the cell envelope of gram-positive bacteria and play an important role as mediators of bacterial interactions with the environment. Here, we describe a simple method for purifying CWPS by extraction of bacterial cells with consecutive acid treatments. Purified CWPS are obtained by gel-filtration chromatography following treatment with HF. We also provide the methodology to easily assess the integrity of CWPS using high-resolution magic-angle spinning (HR-MAS) NMR.
Collapse
Affiliation(s)
- Irina Sadovskaya
- Équipe BPA, Univ. Littoral Côte d'Opale, convention ANSES, EA 7394, ICV Charles Violette, Univ. Lille, Univ. Artois, INRA, ISA F-62321, Boulogne-sur-mer, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
3
|
1H HR-MAS NMR spectroscopy to study the metabolome of the protozoan parasite Giardia lamblia. Talanta 2018; 188:429-441. [PMID: 30029398 DOI: 10.1016/j.talanta.2018.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022]
Abstract
Knowledge of the metabolic profile and exchange processes in the protozoan parasite Giardia lamblia is of importance for a better understanding of the biochemical processes and for the development of drugs to control diseases caused by G. lamblia. In the current paper, 1H High Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy was directly applied to G. lamblia trophozoite suspensions to analyze the detectable small metabolites with a minimum of intervention. Thirty-one components were identified with main contributions from amino acids such as alanine and ornithine. The reproducibility, variability, and stability of the metabolites were investigated. Citrulline was found to be formed as an intermediate and citrulline levels depended on the stage of cell growth. Glucose-1-phosphate was found to be formed in relatively high amounts after cell harvesting if enzymes were not inactivated. In addition, the metabolic footprint of Giardia trophozoites, i.e. changes in the culture medium induced by G. lamblia, was investigated by liquid state NMR spectroscopy of culture media before and after inoculation. A quantitative comparison of the NMR spectra revealed component changes in the culture media during growth. The results suggested that not glucose but rather arginine serves as main energy supply. Biochemical functions of intracellular components and their metabolic exchange with the culture medium are discussed. The results provide an important basis for the design of HR-MAS NMR based metabolomic studies of G. lamblia in particular and any protozoan parasite samples in general.
Collapse
|
4
|
Marchetti R, Perez S, Arda A, Imberty A, Jimenez‐Barbero J, Silipo A, Molinaro A. "Rules of Engagement" of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen 2016; 5:274-96. [PMID: 27547635 PMCID: PMC4981046 DOI: 10.1002/open.201600024] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Understanding the dynamics of protein-ligand interactions, which lie at the heart of host-pathogen recognition, represents a crucial step to clarify the molecular determinants implicated in binding events, as well as to optimize the design of new molecules with therapeutic aims. Over the last decade, advances in complementary biophysical and spectroscopic methods permitted us to deeply dissect the fine structural details of biologically relevant molecular recognition processes with high resolution. This Review focuses on the development and use of modern nuclear magnetic resonance (NMR) techniques to dissect binding events. These spectroscopic methods, complementing X-ray crystallography and molecular modeling methodologies, will be taken into account as indispensable tools to provide a complete picture of protein-glycoconjugate binding mechanisms related to biomedicine applications against infectious diseases.
Collapse
Affiliation(s)
- Roberta Marchetti
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Serge Perez
- Department Molecular Pharmacochemistry UMR 5063CNRS and University of GrenobleAlpes, BP 5338041 Grenoble cedex 9France
| | - Ana Arda
- Bizkaia Technological ParkCIC bioGUNEBuilding 801A-148160Derio-BizkaiaSpain
| | - Anne Imberty
- Centre de Recherche sur les CNRSand University of Grenoble Macromolécules Végétales, UPR 5301Alpes, BP 5338041Grenoble cedex 9France
| | | | - Alba Silipo
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Antonio Molinaro
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
5
|
Schubert M, Walczak MJ, Aebi M, Wider G. Posttranslational Modifications of Intact Proteins Detected by NMR Spectroscopy: Application to Glycosylation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Schubert M, Walczak MJ, Aebi M, Wider G. Posttranslational modifications of intact proteins detected by NMR spectroscopy: application to glycosylation. Angew Chem Int Ed Engl 2015; 54:7096-100. [PMID: 25924827 DOI: 10.1002/anie.201502093] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 02/02/2023]
Abstract
Posttranslational modifications (PTMs) are an integral part of the majority of proteins. The characterization of structure and function of PTMs can be very challenging especially for glycans. Existing methods to analyze PTMs require complicated sample preparations and suffer from missing certain modifications, the inability to identify linkage types and thus chemical structure. We present a direct, robust, and simple NMR spectroscopy method for the detection and identification of PTMs in proteins. No isotope labeling is required, nor does the molecular weight of the studied protein limit the application. The method can directly detect modifications on intact proteins without sophisticated sample preparation. This approach is well suited for diagnostics of proteins derived from native organisms and for the quality control of biotechnologically produced therapeutic proteins.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich (Switzerland). .,Present address: Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg (Austria).
| | - Michal J Walczak
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich (Switzerland).
| | - Markus Aebi
- Institute of Microbiology, ETH Zürich, 8093 Zürich (Switzerland)
| | - Gerhard Wider
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich (Switzerland)
| |
Collapse
|
7
|
Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio 2014; 5:e00880-14. [PMID: 24803515 PMCID: PMC4010823 DOI: 10.1128/mbio.00880-14] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Analysis of the genetic locus encompassing a cell wall polysaccharide (CWPS) biosynthesis operon of eight strains of Lactococcus lactis, identified as belonging to the same CWPS type C genotype, revealed the presence of a variable region among the strains examined. The results allowed the identification of five subgroups of the C type named subtypes C1 to C5. This variable region contains genes encoding glycosyltransferases that display low or no sequence homology between the subgroups. In this study, we purified an acidic polysaccharide from the cell wall of L. lactis 3107 (subtype C2) and confirmed that it is structurally different from the previously established CWPS of subtype C1L. lactis MG1363. The CWPS of L. lactis 3107 is composed of pentasaccharide repeating units linked by phosphodiester bonds with the structure 6-α-Glc-3-β-Galf-3-β-GlcNAc-2-β-Galf-6-α-GlcNAc-1-P. Combinations of genes from the variable region of subtype C2 were introduced into a mutant of subtype C1L. lactis NZ9000 deficient in CWPS biosynthesis. The resulting recombinant mutant synthesized a polysaccharide with a composition characteristic of that of subtype C2L. lactis 3107 and not wild-type C1L. lactis NZ9000. By challenging the recombinant mutant with various lactococcal phages, we demonstrated that CWPS is the host cell surface receptor of tested bacteriophages of both the P335 and 936 groups and that differences between the CWPS structures play a crucial role in determining phage host range. Despite the efforts of nearly 80 years of lactococcal phage research, the precise nature of the cell surface receptors of the P335 and 936 phage group receptors has remained elusive. This work demonstrates the molecular nature of a P335 group receptor while bolstering the evidence of its role in host recognition by phages of the 936 group and at least partially explains why such phages have a very narrow host range. The information generated will be instrumental in understanding the molecular mechanisms of how phages recognize specific saccharidic receptors located on the surface of their bacterial host.
Collapse
|
8
|
Characterization of the recombinant Candida albicans β-1,2-mannosyltransferase that initiates the β-mannosylation of cell wall phosphopeptidomannan. Biochem J 2014; 457:347-60. [PMID: 24138199 DOI: 10.1042/bj20131012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of β-mannosides in their cell walls confers specific features on the pathogenic yeasts Candida albicans and Candida glabrata compared with non-pathogenic yeasts. In the present study, we investigated the enzymatic properties of Bmt1 (β-mannosyltransferase 1), a member of the recently identified β-mannosyltransferase family, from C. albicans. A recombinant soluble enzyme lacking the N-terminal region was expressed as a secreted protein from the methylotrophic yeast Pichia pastoris. In parallel, functionalized natural oligosaccharides isolated from Saccharomyces cerevisiae and a C. albicans mutant strain, as well as synthetic α-oligomannosides, were prepared and used as potential acceptor substrates. Bmt1p preferentially utilizes substrates containing linear chains of α-1,2-linked mannotriose or mannotetraose. The recombinant enzyme consecuti-vely transfers two mannosyl units on to these acceptors, leading to the production of α-mannosidase-resistant oligomannosides. NMR experiments further confirmed the presence of a terminal βMan (β-1,2-linked mannose) unit in the first enzyme product. In the future, a better understanding of specific β-1,2-mannosyltransferase molecular requirements will help the design of new potential antifungal drugs.
Collapse
|
9
|
del Carmen Fernández-Alonso M, Díaz D, Berbis MÁ, Marcelo F, Cañada J, Jiménez-Barbero J. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr Protein Pept Sci 2013; 13:816-30. [PMID: 23305367 PMCID: PMC3706953 DOI: 10.2174/138920312804871175] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 02/04/2023]
Abstract
Diseases that result from infection are, in general, a consequence of specific interactions between a pathogenic organism and the cells. The study of host-pathogen interactions has provided insights for the design of drugs with therapeutic properties. One area that has proved to be promising for such studies is the constituted by carbohydrates which participate in biological processes of paramount importance. On the one hand, carbohydrates have shown to be information carriers with similar, if not higher, importance than traditionally considered carriers as amino acids and nucleic acids. On the other hand, the knowledge on molecular recognition of sugars by lectins and other carbohydrate-binding proteins has been employed for the development of new biomedical strategies. Biophysical techniques such as X-Ray crystallography and NMR spectroscopy lead currently the investigation on this field. In this review, a description of traditional and novel NMR methodologies employed in the study of sugar-protein interactions is briefly presented in combination with a palette of NMR-based studies related to biologically and/or pharmaceutically relevant applications.
Collapse
|
10
|
|
11
|
Jawhara S, Mogensen E, Maggiotto F, Fradin C, Sarazin A, Dubuquoy L, Maes E, Guérardel Y, Janbon G, Poulain D. Murine model of dextran sulfate sodium-induced colitis reveals Candida glabrata virulence and contribution of β-mannosyltransferases. J Biol Chem 2012; 287:11313-24. [PMID: 22291009 DOI: 10.1074/jbc.m111.329300] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida glabrata, like Candida albicans, is an opportunistic yeast pathogen that has adapted to colonize all segments of the human gastrointestinal tract and vagina. The C. albicans cell wall expresses β-1,2-linked mannosides (β-Mans), promoting its adherence to host cells and tissues. Because β-Mans are also present in C. glabrata, their role in C. glabrata colonization and virulence was investigated in a murine model of dextran sulfate sodium (DSS)-induced colitis. Five clustered genes of C. glabrata encoding β-mannosyltransferases, BMT2-BMT6, were deleted simultaneously. β-Man expression was studied by Western blotting, flow cytometry, and NMR analysis. Mortality, clinical, histologic, and colonization scores were determined in mice receiving DSS and different C. glabrata strains. The results show that C. glabrata bmt2-6 strains had a significant reduction in β-1,2-Man expression and a disappearance of β-1,2-mannobiose in the acid-stable domain. A single gavage of C. glabrata wild-type strain in mice with DSS-induced colitis caused a loss of body weight, colonic inflammation, and mortality. Mice receiving C. glabrata bmt2-6 mutant strains had normal body weight and reduced colonic inflammation. Lower numbers of colonies of C. glabrata bmt2-6 were recovered from stools and different parts of the gastrointestinal tract. Histopathologic examination revealed that the wild-type strain had a greater ability to colonize tissue and cause tissue damage. These results showed that C. glabrata has a high pathogenic potential in DSS-induced colitis, where β-Mans contribute to colonization and virulence.
Collapse
Affiliation(s)
- Samir Jawhara
- Université Lille Nord de France, 59000 Lille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mannan structural complexity is decreased when Candida albicans is cultivated in blood or serum at physiological temperature. Carbohydr Res 2011; 346:2752-9. [PMID: 22030461 DOI: 10.1016/j.carres.2011.09.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/19/2011] [Accepted: 09/24/2011] [Indexed: 11/20/2022]
Abstract
The Candida albicans cell wall provides an architecture that allows for the organism to survive environmental stress as well as interaction with host tissues. Previous work has focused on growing C. albicans on media such as Sabouraud or YPD at 30°C. Because C. albicans normally colonizes a host, we hypothesized that cultivation on blood or serum at 37°C would result in structural changes in cell wall mannan. C. albicans SC5314 was inoculated onto YPD, 5% blood, or 5% serum agar media three successive times at 30°C and 37°C, then cultivated overnight at 30°C in YPD. The mannan was extracted and characterized using 1D and 2D (1)H NMR techniques. At 30°C cells grown in blood and serum contain less acid-stable terminal β-(1→2)-linked d-mannose and α-(1→2)-linked d-mannose-containing side chains, while the acid-labile side chains of mannan grown in blood and serum contain fewer β-Man-(1→2)-α-Man-(1→ side chains. The decrement in acid-stable mannan side chains is greater at 37°C than at 30°C. Cells grown on blood at 37°C show fewer →6)-α-Man-(1→ structural motifs in the acid-stable polymer backbone. The data indicate that C. albicans, grown on media containing host-derived components, produces less complex mannan. This is accentuated when the cells are cultured at 37°C. This study demonstrates that the C. albicans cell wall is a dynamic and adaptive organelle, which alters its structural phenotype in response to growth in host-derived media at physiological temperature.
Collapse
|
13
|
Candela T, Maes E, Garénaux E, Rombouts Y, Krzewinski F, Gohar M, Guérardel Y. Environmental and biofilm-dependent changes in a Bacillus cereus secondary cell wall polysaccharide. J Biol Chem 2011; 286:31250-62. [PMID: 21784857 DOI: 10.1074/jbc.m111.249821] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1-3)]GlcNAc(β1-6)[Glc(β1-3)][ManNAc(α1-4)]GalNAc(α1-4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1-2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm.
Collapse
Affiliation(s)
- Thomas Candela
- Université de Lille1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59650 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|