1
|
Yoshimura T. Molecular basis and functional development of enzymes related to amino acid metabolism. Biosci Biotechnol Biochem 2022; 86:1161-1172. [PMID: 35751623 DOI: 10.1093/bbb/zbac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/12/2022]
Abstract
Enzymology, the study of enzyme structures and reaction mechanisms can be considered a classical discipline. However, enzymes cannot be freely designed to catalyze desired reactions yet, and enzymology is by no means a complete science. I have long studied the reaction mechanisms of enzymes related to amino acid metabolism, such as aminotransferases and racemases, which depend on pyridoxal 5'-phosphate, a coenzyme form of vitamin B6. During these studies, I have often been reminded that enzymatic reactions are extremely sophisticated processes based on chemical principles and enzyme structures, and have often been amazed at the evolutionary mechanisms that bestowed them with such structures. In this review, I described the reaction mechanism of various pyridoxal enzymes especially related to D-amino acids metabolism, whose roles in mammals have recently attracted attention. I hope to convey some of the significance and interest in enzymology through this review.
Collapse
Affiliation(s)
- Tohru Yoshimura
- Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
2
|
Koulouris CR, Gardiner SE, Harris TK, Elvers KT, Mark Roe S, Gillespie JA, Ward SE, Grubisha O, Nicholls RA, Atack JR, Bax BD. Tyrosine 121 moves revealing a ligandable pocket that couples catalysis to ATP-binding in serine racemase. Commun Biol 2022; 5:346. [PMID: 35410329 PMCID: PMC9001717 DOI: 10.1038/s42003-022-03264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Human serine racemase (hSR) catalyses racemisation of L-serine to D-serine, the latter of which is a co-agonist of the NMDA subtype of glutamate receptors that are important in synaptic plasticity, learning and memory. In a 'closed' hSR structure containing the allosteric activator ATP, the inhibitor malonate is enclosed between the large and small domains while ATP is distal to the active site, residing at the dimer interface with the Tyr121 hydroxyl group contacting the α-phosphate of ATP. In contrast, in 'open' hSR structures, Tyr121 sits in the core of the small domain with its hydroxyl contacting the key catalytic residue Ser84. The ability to regulate SR activity by flipping Tyr121 from the core of the small domain to the dimer interface appears to have evolved in animals with a CNS. Multiple X-ray crystallographic enzyme-fragment structures show Tyr121 flipped out of its pocket in the core of the small domain. Data suggest that this ligandable pocket could be targeted by molecules that inhibit enzyme activity.
Collapse
Affiliation(s)
- Chloe R Koulouris
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QG, UK
| | - Sian E Gardiner
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Tessa K Harris
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Karen T Elvers
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - S Mark Roe
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QJ, UK
| | - Jason A Gillespie
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Olivera Grubisha
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Robert A Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Ave, CB2 0QH, Cambridge, UK
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| | - Benjamin D Bax
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
3
|
Marchesani F, Gianquinto E, Autiero I, Michielon A, Campanini B, Faggiano S, Bettati S, Mozzarelli A, Spyrakis F, Bruno S. The allosteric interplay between S-nitrosylation and glycine binding controls the activity of human serine racemase. FEBS J 2020; 288:3034-3054. [PMID: 33249721 DOI: 10.1111/febs.15645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Human serine racemase (hSR) catalyzes the biosynthesis of D-serine, an obligatory co-agonist of the NMDA receptors. It was previously found that the reversible S-nitrosylation of Cys113 reduces hSR activity. Here, we show by site-directed mutagenesis, fluorescence spectroscopy, mass spectrometry, and molecular dynamics that S-nitrosylation stabilizes an open, less-active conformation of the enzyme. The reaction of hSR with either NO or nitroso donors is conformation-dependent and occurs only in the conformation stabilized by the allosteric effector ATP, in which the ε-amino group of Lys114 acts as a base toward the thiol group of Cys113. In the closed conformation stabilized by glycine-an active-site ligand of hSR-the side chain of Lys114 moves away from that of Cys113, while the carboxyl side-chain group of Asp318 moves significantly closer, increasing the thiol pKa and preventing the reaction. We conclude that ATP binding, glycine binding, and S-nitrosylation constitute a three-way regulation mechanism for the tight control of hSR activity. We also show that Cys113 undergoes H2 O2 -mediated oxidation, with loss of enzyme activity, a reaction also dependent on hSR conformation.
Collapse
Affiliation(s)
- Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Eleonora Gianquinto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Italy
| | - Ida Autiero
- Molecular Horizon Srl, Bettona, PG, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Napoli, Italy
| | - Annalisa Michielon
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Serena Faggiano
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy
| | - Stefano Bettati
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy.,Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy
| | - Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| |
Collapse
|
4
|
Michielon A, Marchesani F, Faggiano S, Giaccari R, Campanini B, Bettati S, Mozzarelli A, Bruno S. Human serine racemase is inhibited by glyceraldehyde 3-phosphate, but not by glyceraldehyde 3-phosphate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140544. [PMID: 32971286 DOI: 10.1016/j.bbapap.2020.140544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 11/28/2022]
Abstract
Murine serine racemase (SR), the enzyme responsible for the biosynthesis of the neuromodulator d-serine, was reported to form a complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH), resulting in SR inhibition. In this work, we investigated the interaction between the two human orthologues. We were not able to observe neither the inhibition nor the formation of the SR-GAPDH complex. Rather, hSR is inhibited by the hGAPDH substrate glyceraldehyde 3-phosphate (G3P) in a time- and concentration-dependent fashion, likely through a covalent reaction of the aldehyde functional group. The inhibition was similar for the two G3P enantiomers but it was not observed for structurally similar aldehydes. We ruled out a mechanism of inhibition based on the competition with either pyridoxal phosphate (PLP) - described for other PLP-dependent enzymes when incubated with small aldehydes - or ATP. Nevertheless, the inhibition time course was affected by the presence of hSR allosteric and orthosteric ligands, suggesting a conformation-dependence of the reaction.
Collapse
Affiliation(s)
- Annalisa Michielon
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Serena Faggiano
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Istituto di Biofisica, CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Roberta Giaccari
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia, Via Volturno 39, 43125 Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Istituto di Biofisica, CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
5
|
Uda K, Edashige Y, Nishimura R, Shikano Y, Matsui T, Radkov AD, Moe LA. Distribution and evolution of the serine/aspartate racemase family in plants. PHYTOCHEMISTRY 2020; 169:112164. [PMID: 31622858 DOI: 10.1016/j.phytochem.2019.112164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that several d-amino acids are widely present in plants, and serine racemase (SerR), which synthesizes d-serine in vivo, has already been identified from three plant species. However, the full picture of the d-amino acid synthesis pathway in plants is not well understood. To clarify the distribution of amino acid racemases in plants, we have cloned, expressed and characterized eight SerR homologous genes from five plant species, including green alga. These SerR homologs exhibited racemase activity towards serine or aspartate and were identified on the basis of their maximum activity as SerR or aspartate racemase (AspR). The plant AspR gene is identified for the first time from Medicago truncatula, Manihot esculenta, Solanum lycopersicum, Sphagnum girgensohnii and Spirogyra pratensis. In addition to the AspR gene, three SerR genes are identified in the former three species. Phylogenetic tree analysis showed that SerR and AspR are widely distributed in plants and form a serine/aspartate racemase family cluster. The catalytic efficiency (kcat/Km) of plant AspRs was more than 100 times higher than that of plant SerRs, suggesting that d-aspartate, as well as d-serine, can be synthesized in vivo by AspR. The amino acid sequence alignment and comparison of the chromosomal gene arrangement have revealed that plant AspR genes independently evolved from SerR in each ancestral lineage of plant species by gene duplication and acquisition of two serine residues at position 150 to 152.
Collapse
Affiliation(s)
- Kouji Uda
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan.
| | - Yumika Edashige
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Rie Nishimura
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Yuuna Shikano
- Laboratory of Biochemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Tohru Matsui
- Laboratory of Plant Taxonomy, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan
| | - Atanas D Radkov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Luke A Moe
- Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
6
|
Graham DL, Beio ML, Nelson DL, Berkowitz DB. Human Serine Racemase: Key Residues/Active Site Motifs and Their Relation to Enzyme Function. Front Mol Biosci 2019; 6:8. [PMID: 30918891 PMCID: PMC6424897 DOI: 10.3389/fmolb.2019.00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/12/2019] [Indexed: 01/06/2023] Open
Abstract
Serine racemase (SR) is the first racemase enzyme to be identified in human biology and converts L-serine to D-serine, an important neuronal signaling molecule that serves as a co-agonist of the NMDA (N-methyl-D-aspartate) receptor. This overview describes key molecular features of the enzyme, focusing on the side chains and binding motifs that control PLP (pyridoxal phosphate) cofactor binding as well as activity modulation through the binding of both divalent cations and ATP, the latter showing allosteric modulation. Discussed are catalytically important residues in the active site including K56 and S84—the si- and re-face bases, respectively,—and R135, a residue that appears to play a critical role in the binding of both negatively charged alternative substrates and inhibitors. The interesting bifurcated mechanism followed by this enzyme whereby substrate L-serine can be channeled either into D-serine (racemization pathway) or into pyruvate (β-elimination pathway) is discussed extensively, as are studies that focus on a key loop region (the so-called “triple serine loop”), the modification of which can be used to invert the normal in vitro preference of this enzyme for the latter pathway over the former. The possible cross-talk between the PLP enzymes hSR and hCBS (human cystathionine β-synthase) is discussed, as the former produces D-serine and the latter produces H2S, both of which stimulate the NMDAR and both of which have been implicated in neuronal infarction pursuant to ischemic stroke. Efforts to gain a more complete mechanistic understanding of these PLP enzymes are expected to provide valuable insights for the development of specific small molecule modulators of these enzymes as tools to study their roles in neuronal signaling and in modulation of NMDAR function.
Collapse
Affiliation(s)
- Danielle L Graham
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew L Beio
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - David L Nelson
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
7
|
Raboni S, Marchetti M, Faggiano S, Campanini B, Bruno S, Marchesani F, Margiotta M, Mozzarelli A. The Energy Landscape of Human Serine Racemase. Front Mol Biosci 2019; 5:112. [PMID: 30687716 PMCID: PMC6333871 DOI: 10.3389/fmolb.2018.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Human serine racemase is a pyridoxal 5′-phosphate (PLP)-dependent dimeric enzyme that catalyzes the reversible racemization of L-serine and D-serine and their dehydration to pyruvate and ammonia. As D-serine is the co-agonist of the N-methyl-D-aspartate receptors for glutamate, the most abundant excitatory neurotransmitter in the brain, the structure, dynamics, function, regulation and cellular localization of serine racemase have been investigated in detail. Serine racemase belongs to the fold-type II of the PLP-dependent enzyme family and structural models from several orthologs are available. The comparison of structures of serine racemase co-crystallized with or without ligands indicates the presence of at least one open and one closed conformation, suggesting that conformational flexibility plays a relevant role in enzyme regulation. ATP, Mg2+, Ca2+, anions, NADH and protein interactors, as well as the post-translational modifications nitrosylation and phosphorylation, finely tune the racemase and dehydratase activities and their relative reaction rates. Further information on serine racemase structure and dynamics resulted from the search for inhibitors with potential therapeutic applications. The cumulative knowledge on human serine racemase allowed obtaining insights into its conformational landscape and into the mechanisms of cross-talk between the effector binding sites and the active site.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy
| | | | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
8
|
Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP. Sci Rep 2018; 8:9016. [PMID: 29899358 PMCID: PMC5998037 DOI: 10.1038/s41598-018-27227-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/25/2018] [Indexed: 11/17/2022] Open
Abstract
Serine racemase (SR) catalyses two reactions: the reversible racemisation of L-serine and the irreversible dehydration of L- and D-serine to pyruvate and ammonia. SRs are evolutionarily related to serine dehydratases (SDH) and degradative threonine deaminases (TdcB). Most SRs and TdcBs – but not SDHs – are regulated by nucleotides. SR binds ATP cooperatively and the nucleotide allosterically stimulates the serine dehydratase activity of the enzyme. A H-bond network comprising five residues (T52, N86, Q89, E283 and N316) and water molecules connects the active site with the ATP-binding site. Conservation analysis points to Q89 as a key residue for the allosteric communication, since its mutation to either Met or Ala is linked to the loss of control of activity by nucleotides. We verified this hypothesis by introducing the Q89M and Q89A point mutations in the human SR sequence. The allosteric communication between the active site and the allosteric site in both mutants is almost completely abolished. Indeed, the stimulation of the dehydratase activity by ATP is severely diminished and the binding of the nucleotide is no more cooperative. Ancestral state reconstruction suggests that the allosteric control by nucleotides established early in SR evolution and has been maintained in most eukaryotic lineages.
Collapse
|
9
|
Mizobuchi T, Nonaka R, Yoshimura M, Abe K, Takahashi S, Kera Y, Goto M. Crystal structure of a pyridoxal 5'-phosphate-dependent aspartate racemase derived from the bivalve mollusc Scapharca broughtonii. Acta Crystallogr F Struct Biol Commun 2017; 73:651-656. [PMID: 29199985 PMCID: PMC5713669 DOI: 10.1107/s2053230x17015813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/30/2017] [Indexed: 11/10/2022] Open
Abstract
Aspartate racemase (AspR) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that is responsible for D-aspartate biosynthesis in vivo. To the best of our knowledge, this is the first study to report an X-ray crystal structure of a PLP-dependent AspR, which was resolved at 1.90 Å resolution. The AspR derived from the bivalve mollusc Scapharca broughtonii (SbAspR) is a type II PLP-dependent enzyme that is similar to serine racemase (SR) in that SbAspR catalyzes both racemization and dehydration. Structural comparison of SbAspR and SR shows a similar arrangement of the active-site residues and nucleotide-binding site, but a different orientation of the metal-binding site. Superposition of the structures of SbAspR and of rat SR bound to the inhibitor malonate reveals that Arg140 recognizes the β-carboxyl group of the substrate aspartate in SbAspR. It is hypothesized that the aromatic proline interaction between the domains, which favours the closed form of SbAspR, influences the arrangement of Arg140 at the active site.
Collapse
Affiliation(s)
- Taichi Mizobuchi
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Risako Nonaka
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Motoki Yoshimura
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Katsumasa Abe
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Shouji Takahashi
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yoshio Kera
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaru Goto
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
10
|
Nelson DL, Applegate GA, Beio ML, Graham DL, Berkowitz DB. Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function. J Biol Chem 2017; 292:13986-14002. [PMID: 28696262 DOI: 10.1074/jbc.m117.777904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
There is currently great interest in human serine racemase, the enzyme responsible for producing the NMDA co-agonist d-serine. Reported correlation of d-serine levels with disorders including Alzheimer's disease, ALS, and ischemic brain damage (elevated d-serine) and schizophrenia (reduced d-serine) has further piqued this interest. Reported here is a structure/activity relationship study of position Ser84, the putative re-face base. In the most extreme case of functional reprogramming, the S84D mutant displays a dramatic reversal of β-elimination substrate specificity in favor of l-serine over the normally preferred l-serine-O-sulfate (∼1200-fold change in kcat/Km ratios) and l (l-THA; ∼5000-fold change in kcat/Km ratios) alternative substrates. On the other hand, the S84T (which performs l-Ser racemization activity), S84A (good kcat but high Km for l-THA elimination), and S84N mutants (nearly WT efficiency for l-Ser elimination) displayed intermediate activity, all showing a preference for the anionic substrates, but generally attenuated compared with the native enzyme. Inhibition studies with l-erythro-β-hydroxyaspartate follow this trend, with both WT serine racemase and the S84N mutant being competitively inhibited, with Ki = 31 ± 1.5 μm and 1.5 ± 0.1 mm, respectively, and the S84D being inert to inhibition. Computational modeling pointed to a key role for residue Arg-135 in binding and properly positioning the l-THA and l-serine-O-sulfate substrates and the l-erythro-β-hydroxyaspartate inhibitor. Examination of available sequence data suggests that Arg-135 may have originated for l-THA-like β-elimination function in earlier evolutionary variants, and examination of available structural data suggests that a Ser84-H2O-Lys114 hydrogen-bonding network in human serine racemase lowers the pKa of the Ser84re-face base.
Collapse
Affiliation(s)
- David L Nelson
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Greg A Applegate
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Matthew L Beio
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Danielle L Graham
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - David B Berkowitz
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
11
|
Distribution and evolution of the serine/aspartate racemase family in invertebrates. Amino Acids 2015; 48:387-402. [DOI: 10.1007/s00726-015-2092-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023]
|
12
|
Beato C, Pecchini C, Cocconcelli C, Campanini B, Marchetti M, Pieroni M, Mozzarelli A, Costantino G. Cyclopropane derivatives as potential human serine racemase inhibitors: unveiling novel insights into a difficult target. J Enzyme Inhib Med Chem 2015; 31:645-52. [PMID: 26133542 DOI: 10.3109/14756366.2015.1057720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
d-Serine is the co-agonist of NMDA receptors and binds to the so-called glycine site. d-Serine is synthesized by human serine racemase (SR). Over activation of NMDA receptors is involved in many neurodegenerative diseases and, therefore, the inhibition of SR might represent a novel strategy for the treatment of these pathologies. SR is a very difficult target, with only few compounds so far identified exhibiting weak inhibitory activity. This study was aimed at the identification of novel SR inhibitor by mimicking malonic acid, the best-known SR inhibitor, with a cyclopropane scaffold. We developed, synthesized, and tested a series of cyclopropane dicarboxylic acid derivatives, complementing the synthetic effort with molecular docking. We identified few compounds that bind SR in high micromolar range with a lack of significant correlation between experimental and predicted binding affinities. The thorough analysis of the results can be exploited for the development of more potent SR inhibitors.
Collapse
Affiliation(s)
- Claudia Beato
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Chiara Pecchini
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Chiara Cocconcelli
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Barbara Campanini
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | | | - Marco Pieroni
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Andrea Mozzarelli
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy .,b Istituto Nazionale Biostrutture e Biosistemi -- Consorzio Interuniversitario , Roma , Italy , and.,c Istituto di Biofisica, CNR , Pisa , Italy
| | - Gabriele Costantino
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| |
Collapse
|
13
|
Inhibition of serine and proline racemases by substrate-product analogues. Bioorg Med Chem Lett 2014; 24:390-3. [DOI: 10.1016/j.bmcl.2013.10.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/16/2022]
|
14
|
Ito T, Maekawa M, Hayashi S, Goto M, Hemmi H, Yoshimura T. Catalytic mechanism of serine racemase from Dictyostelium discoideum. Amino Acids 2012; 44:1073-84. [PMID: 23269477 DOI: 10.1007/s00726-012-1442-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/30/2012] [Indexed: 01/22/2023]
Abstract
The eukaryotic serine racemase from Dictyostelium discoideum is a fold-type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes racemization and dehydration of both isomers of serine. In the present study, the catalytic mechanism and role of the active site residues of the enzyme were examined by site-directed mutagenesis. Mutation of the PLP-binding lysine (K56) to alanine abolished both serine racemase and dehydrase activities. Incubation of D- and L-serine with the resultant mutant enzyme, K56A, resulted in the accumulation of PLP-serine external aldimine, while less amounts of pyruvate, α-aminoacrylate, antipodal serine and quinonoid intermediate were formed. An alanine mutation of Ser81 (S81) located on the opposite side of K56 against the PLP plane converted the enzyme from serine racemase to L-serine dehydrase; S81A showed no racemase activity and had significantly reduced D-serine dehydrase activity, but it completely retained its L-serine dehydrase activity. Water molecule(s) at the active site of the S81A mutant enzyme probably drove D-serine dehydration by abstracting the α-hydrogen in D-serine. Our data suggest that the abstraction and addition of α-hydrogen to L- and D-serine are conducted by K56 and S81 at the si- and re-sides, respectively, of PLP.
Collapse
Affiliation(s)
- Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Spatiotemporal localization of D-amino acid oxidase and D-aspartate oxidases during development in Caenorhabditis elegans. Mol Cell Biol 2012; 32:1967-83. [PMID: 22393259 DOI: 10.1128/mcb.06513-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent investigations have shown that a variety of D-amino acids are present in living organisms and that they possibly play important roles in physiological functions in the body. D-Amino acid oxidase (DAO) and D-aspartate oxidase (DDO) are degradative enzymes stereospecific for D-amino acids. They have been identified in various organisms, including mammals and the nematode Caenorhabditis elegans, although the significance of these enzymes and the relevant functions of D-amino acids remain to be elucidated. In this study, we investigated the spatiotemporal localization of C. elegans DAO and DDOs (DDO-1, DDO-2, and DDO-3) and measured the levels of several D- and L-amino acids in wild-type C. elegans and four mutants in which each gene for DAO and the DDOs was partially deleted and thereby inactivated. Furthermore, several phenotypes of these mutant strains were characterized. The results reported in this study indicate that C. elegans DAO and DDOs are involved in egg-laying events and the early development of C. elegans. In particular, DDOs appear to play important roles in the development and maturation of germ cells. This work provides novel and useful insights into the physiological functions of these enzymes and D-amino acids in multicellular organisms.
Collapse
|
16
|
Abstract
D-Amino acids play important physiological roles in the mammalian body. Recent investigations revealed that, in mammals, D-amino acids are synthesized from their corresponding L-enantiomers via amino acid racemase. This article describes a method used to measure amino acid racemase activity by high-performance liquid chromatography (HPLC). The assay involves fluorogenic chiral derivatization of amino acids with a newly developed reagent, and enantioseparation of D- and L-amino acid derivatives by HPLC. The method is accurate and reliable, and can be automated using a programmable autosampling injector.
Collapse
Affiliation(s)
- Masumi Katane
- Department of Pharmaceutical Life Sciences, Kitasato University, Minatoku, Tokyo, Japan
| | | | | |
Collapse
|
17
|
Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids 2011; 42:1553-82. [PMID: 21519915 DOI: 10.1007/s00726-011-0915-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | | |
Collapse
|
18
|
Bruno A, Amori L, Costantino G. Addressing the Conformational Flexibility of Serine Racemase by Combining Targeted Molecular Dynamics, Conformational Sampling and Docking Studies. Mol Inform 2011; 30:317-28. [DOI: 10.1002/minf.201000162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/22/2010] [Indexed: 11/06/2022]
|
19
|
Wolosker H. Serine racemase and the serine shuttle between neurons and astrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1558-66. [PMID: 21224019 DOI: 10.1016/j.bbapap.2011.01.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/02/2011] [Accepted: 01/04/2011] [Indexed: 11/24/2022]
Abstract
d-Serine is a brain-enriched d-amino acid that works as a transmitter-like molecule by physiologically activating NMDA receptors. Synthesis of d-serine is carried out by serine racemase (SR), a pyridoxal 5'-phosphate-dependent enzyme. In addition to carry out racemization, SR α,β-eliminates water from l- or d-serine, generating pyruvate and NH(4)(+). Here I review the main mechanisms regulating SR activity and d-serine dynamics in the brain. I propose a role for SR in a novel form of astrocyte-neuron communication-the "serine shuttle", whereby astrocytes synthesize and export l-serine required for the synthesis of d-serine by the predominantly neuronal SR. d-Serine synthesized and released by neurons can be further taken up by astrocytes for storage and activity-dependent release. I discuss how SR α,β-elimination with d-serine itself may limit the achievable intracellular d-serine concentration, providing a mechanistic rationale on why neurons do not store as much d-serine as astrocytes. The higher content of d-serine in astrocytes appears to be related to increased d-serine stability, for their low SR expression will prevent substantial d-serine metabolism via α,β-elimination. SR and the serine shuttle pathway are therapeutic targets in neurodegenerative diseases in which NMDA receptor dysfunction plays pathological roles. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Herman Wolosker
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
20
|
Gherardini PF, Ausiello G, Helmer-Citterich M. Superpose3D: a local structural comparison program that allows for user-defined structure representations. PLoS One 2010; 5:e11988. [PMID: 20700534 PMCID: PMC2916828 DOI: 10.1371/journal.pone.0011988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/08/2010] [Indexed: 11/19/2022] Open
Abstract
Local structural comparison methods can be used to find structural similarities involving functional protein patches such as enzyme active sites and ligand binding sites. The outcome of such analyses is critically dependent on the representation used to describe the structure. Indeed different categories of functional sites may require the comparison program to focus on different characteristics of the protein residues. We have therefore developed superpose3D, a novel structural comparison software that lets users specify, with a powerful and flexible syntax, the structure description most suited to the requirements of their analysis. Input proteins are processed according to the user's directives and the program identifies sets of residues (or groups of atoms) that have a similar 3D position in the two structures. The advantages of using such a general purpose program are demonstrated with several examples. These test cases show that no single representation is appropriate for every analysis, hence the usefulness of having a flexible program that can be tailored to different needs. Moreover we also discuss how to interpret the results of a database screening where a known structural motif is searched against a large ensemble of structures. The software is written in C++ and is released under the open source GPL license. Superpose3D does not require any external library, runs on Linux, Mac OSX, Windows and is available at http://cbm.bio.uniroma2.it/superpose3D.
Collapse
Affiliation(s)
- Pier Federico Gherardini
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Gabriele Ausiello
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- * E-mail:
| | - Manuela Helmer-Citterich
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
21
|
Friedman M. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids. Chem Biodivers 2010; 7:1491-530. [DOI: 10.1002/cbdv.200900225] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Hoffman HE, Jirásková J, Zvelebil M, Konvalinka J. Random mutagenesis of human serine racemase reveals residues important for the enzymatic activity. ACTA ACUST UNITED AC 2010. [DOI: 10.1135/cccc2010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human serine racemase (hSR) is a cytosolic pyridoxal-5′-phosphate dependent enzyme responsible for production of D-serine in the central nervous system. D-Serine acts as an endogenous coagonist of N-methyl-D-aspartate receptor ion channels. Increased levels of D-serine have been linked to amyotrophic lateral sclerosis and Alzheimer’s disease, indicating that SR inhibitors might be useful tools for investigation or treatment of neurodegenerative diseases. However, despite hSR’s promise as a therapeutic target, relatively few specific inhibitors have been identified, which is due in part to the lack of a three-dimensional structure of the enzyme. Here, we present a strategy for the generation and screening of random hSR mutants. From a library of randomly mutated hSR variants, twenty-seven soluble mutants were selected, expressed, and evaluated for enzymatic activity. Taking three carefully characterized mutants as an example, we show how this strategy can be used to pinpoint structurally and functionally important residues. In particular, we identify S84 and P111 as residues crucial for hSR activity and C217 and K221 as residues important for binding of the Mg2+ cofactor as well as for overall stability of the enzyme.
Collapse
|
23
|
Goto M, Yamauchi T, Kamiya N, Miyahara I, Yoshimura T, Mihara H, Kurihara T, Hirotsu K, Esaki N. Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe. J Biol Chem 2009; 284:25944-52. [PMID: 19640845 DOI: 10.1074/jbc.m109.010470] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-serine is an endogenous coagonist for the N-methyl-D-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5'-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of L-serine to yield D-serine and vice versa. The enzyme also catalyzes the dehydration of D- and L-serine. Both reactions are enhanced by Mg.ATP in vivo. We have determined the structures of the following three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe: the wild-type enzyme, the wild-type enzyme in the complex with an ATP analog, and the modified enzyme in the complex with serine at 1.7, 1.9, and 2.2 A resolution, respectively. On binding of the substrate, the small domain rotates toward the large domain to close the active site. The ATP binding site was identified at the domain and the subunit interface. Computer graphics models of the wild-type enzyme complexed with L-serine and D-serine provided an insight into the catalytic mechanisms of both reactions. Lys-57 and Ser-82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique "lysino-D-alanyl" residue at the active site, also exhibits catalytic activities. The crystal-soaking experiment showed that the substrate serine was actually trapped in the active site of the modified enzyme, suggesting that the lysino-D-alanyl residue acts as a catalytic base in the same manner as inherent Lys-57 of the wild-type enzyme.
Collapse
Affiliation(s)
- Masaru Goto
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|