1
|
Suzuki T. Role of Glycoconjugates and Mammalian Sialidases Involved in Viral Infection and Neural Function. YAKUGAKU ZASSHI 2022; 142:381-388. [DOI: 10.1248/yakushi.21-00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takashi Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
2
|
Takahashi T, Kurebayashi Y, Suzuki T. Functional Analysis of Sulfatide in Influenza A Virus Infection and Replication. Methods Mol Biol 2022; 2556:97-122. [PMID: 36175630 DOI: 10.1007/978-1-0716-2635-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
3-O-sulfation synthesizes sulfatide in the galactose moiety of galactosylceramide. Sulfatide is expressed in many organs such as the gastrointestinal tract, trachea, kidney, and central nervous system. Influenza A virus binds not only to glycoconjugates terminally containing sialic acid as a viral binding receptor but also to sulfatide not containing sialic acid. On the surface of infected cells, the envelope glycoprotein hemagglutinin of influenza A virus interacts with sulfatide. This interaction enhances the nuclear export of viral ribonucleoprotein complexes, resulting in efficient progeny viruses. Inhibiting this interaction would be a new potent anti-influenza drug that suppresses the progeny virus production in the infected cells.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
3
|
Takahashi T, Kawagishi S, Funahashi H, Hayashi N, Suzuki T. Production and Purification of Secretory Simian Cytidine Monophosphate-N-acetylneuraminic Acid Hydroxylase Using Baculovirus-Protein Expression System. Biol Pharm Bull 2016; 38:1220-6. [PMID: 26235586 DOI: 10.1248/bpb.b15-00299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytidine monophosphate (CMP) N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH) is an essential enzyme for N-glycolylneuraminic acid (Neu5Gc) synthesis. In humans, Neu5Gc cannot be synthesized because of a deletion in the CMAH gene. Since Neu5Gc research has not been actively performed in comparison with Neu5Ac research, little is known about the function of Neu5Gc. Possible reasons are that CMAH for controlling Neu5Gc synthesis is not understood well at the molecular level, that commercial Neu5Gc is expensive, and that addition of exogenous Neu5Gc to glycoconjugates is not a general method because of the difficulty in obtaining CMAH. One solution to these problems is to achieve large-scale production of CMAH with enzymatic activity. To produce and purify CMAH as simply as possible, we generated simian CMAH as a secretory protein with a histidine tag using a baculovirus protein expression system. After culture of baculovirus-infected cells in serum-free medium, secretory simian CMAH (approximately 180 µg) was highly purified from the supernatant (150 mL) of cell culture. HPLC analysis showed conversion of CMP-Neu5Ac to CMP-Neu5Gc by the secretory CMAH. We succeeded in producing secretory CMAH with enzymatic activity that is easy to purify. In addition, peptide-N-glycosidase F treatment of CMAH indicated that secretory CMAH was a glycoprotein with N-glycan. It will also contribute to research on Neu5Gc function by easy-to-use methods for controlling Neu5Gc synthesis, for exogenous addition of Neu5Gc to glycoconjugates and by application to industrial Neu5Gc synthesis.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | | |
Collapse
|
4
|
Abstract
Sulfatide is a 3-O-sulfated galactosylceramide that is abundantly expressed in the gastrointestinal tract, kidney, trachea, and particularly the central nervous system. Cellular sulfatide is mainly localized in the Golgi apparatus, cellular membrane, and lysosomes in cytosol. Since our earlier report showed that the influenza A virus specifically binds to sulfatide, we have investigated the roles of sulfatide in the influenza A virus lifecycle. The viral binding is independent of sialic acids, which function as virus receptors in virus attachment to the host cell surface. Sulfatide is recognized by the ectodomain of the viral envelope glycoprotein hemagglutinin (HA). Nascent HA is transported on the surface membrane of infected cells. The binding of HA with sulfatide on the cell surface induces apoptosis through potential loss of the mitochondrial membrane and nuclear translocation of apoptosis-inducing factor in mitochondria, where PB1-F2 peptide from the viral gene is accumulated. In the nucleus of infected cells, viral ribonucleoprotein (vRNP) complexes are formed from viral RNA genomes, viral nucleoprotein, and viral RNA polymerase subunits, and these complexes are selectively exported into cytosol through the nuclear membrane. The apoptosis significantly enhances the nuclear export of vRNP complexes, resulting in efficient formation of progeny viruses and facilitation of virus replication. At that time, activation of the Raf/mitogen-activated protein extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway through sulfatide is associated with virus replication. Our studies have demonstrated that sulfatide is not a viral receptor for virus infection, and that the binding of HA with sulfatide functions as an initiation switch for the formation of progeny viruses.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | |
Collapse
|
5
|
Functional analysis of glyco-molecules that bind with influenza virus. Uirusu 2016; 66:101-116. [PMID: 28484173 DOI: 10.2222/jsv.66.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Influenza A virus (IAV) recognizes terminal sialic acid of sialoglyco-conjugates on host cells through the viral envelope glycoprotein hemagglutinin (HA), followed by initiation of entry into the cells. Molecular species of sialic acid are largely divided into two moieties: N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). A receptor for IAV infection generally means Neu5Ac. Almost all equine IAVs and some human, swine, and duck IAVs bind not only to Neu5Ac but also to Neu5Gc. In nonhuman animals, Neu5Gc has been detected in swine and equine tracheas and the duck colon, which are the main replication sites of mammalian and avian IAVs. Therefore, Neu5Gc in these sites has been suggested to be a functional receptor for IAV infection. Humans cannot synthesize Neu5Gc due to a genetic defect of the Neu5Gc-synthesizing enzyme. We evaluated the receptor function of Neu5Gc in IAV infection in human cells. Our results indicated that Neu5Gc expression on the surface of human cells is not a functional receptor for IAV infection and that it has a negative effect on infectivity of IAV possessing Neu5Gc binding ability. IAV also binds to non-sialo 3-O-sulfated galactosylceramide (sulfatide). Sulfatide has been suggested to be a functional receptor for IAV infection. However, we have shown that sulfatide is not a functional receptor for IAV infection and that the binding of HA with sulfatide enhances progeny virus production. It is expected that functions of these glyco-molecules can be used in prevention and development of new drugs against IAV.
Collapse
|
6
|
Abstract
Influenza A virus (IAV) has two envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). HA binds to sialic acids at the terminals of glycochains on the host cell surface as virus receptors. NA shows sialidase activity, which cleaves sialic acids from the terminals of glycochains. A new subtype (antigenicities of HA and NA) of IAV for humans has pandemic potential. We investigated the functions of HA and NA in IAV replication and pandemic potential in terms of glycoscience. We found that the sialidase activity of pandemic IAV had low pH stability, which enhanced IAV replication. It is thought that the low pH stability contributed to the pandemics in 1968 and 2009. HA also binds to sulfatide not containing sialic acid, and we found that sulfatide enhanced IAV replication. Binding of HA to sulfatide on the host cell surface enhanced progeny IAV formation in infected cells through the induction of the nuclear export of viral ribonucleoproteins by apoptosis. Sialic acid species are divided into N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). The HAs of some human IAVs bind not only to Neu5Ac but also to Neu5Gc, which may facilitate the occurrence of a human IAV-based pandemic by genetic reassortment among IAV genomes in pig tracheas expressing Neu5Gc. We identified the amino acid residues of human IAV HA responsible for Neu5Gc binding and developed new techniques for the sensitive detection of IAV receptor specificities and infected cells. Our "glycovirology" research will provide new insights into the mechanisms of IAV replication and pandemic potential.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
7
|
Takahashi T, Kawagishi S, Masuda M, Suzuki T. Binding kinetics of sulfatide with influenza A virus hemagglutinin. Glycoconj J 2013; 30:709-16. [PMID: 23604989 DOI: 10.1007/s10719-013-9477-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
Abstract
Association of a sulfated galactosyl ceramide, sulfatide, with the viral envelope glycoprotein hemagglutinin (HA) delivered to the cell surface is required for influenza A virus (IAV) replication through efficient translocation of the newly synthesized viral nucleoprotein from the nucleus to the cytoplasm. To determine whether the ectodomain of HA can bind to sulfatide, a secreted-type HA (sHA), in which the transmembrane region and cytoplasmic tail were deleted, was generated by using a baculovirus expression system. The receptor binding ability and antigenic structure of sHA were evaluated by a hemagglutination assay, solid-phase binding assay and hemagglutination inhibition assay. sHA showed subtype-specific antigenicity and binding ability to both sulfatide and gangliosides. Kinetics of sHA binding to sulfatide and GD1a was demonstrated by quartz crystal microbalance (QCM) analysis. QCM analysis showed that the sHA bound with the association rate constant (k on) of 1.41 × 10(4) M(-1) sec(-1), dissociation rate constant (k off) of 2.03 × 10(-4) sec(-1) and K d of 1.44 × 10(-8) M to sulfatide immobilized on a sensor chip. The k off values of sHA were similar for sulfatide and GD1a, whereas the k on value of sHA binding to sulfatide was 2.56-times lower than that of sHA binding to GD1a. The results indicate that sulfatide directly binds to the ectodomain of HA with high affinity.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences and Global COE Program for Innovation in Human Health Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | | | | | | |
Collapse
|
8
|
Takahashi T, Takaguchi M, Kawakami T, Suzuki T. Sulfatide regulates caspase-3-independent apoptosis of influenza A virus through viral PB1-F2 protein. PLoS One 2013; 8:e61092. [PMID: 23593400 PMCID: PMC3617187 DOI: 10.1371/journal.pone.0061092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 03/05/2013] [Indexed: 01/24/2023] Open
Abstract
Influenza A virus (IAV) generally causes caspase-dependent apoptosis based on caspase-3 activation, resulting in nuclear export of newly synthesized viral nucleoprotein (NP) and elevated virus replication. Sulfatide, a sulfated galactosylsphingolipid, enhances IAV replication through promoting newly synthesized viral NP export induced by association of sulfatide with hemagglutinin delivered to the cell surface. Here, we demonstrated that sulfatide is involved in caspase-3-independent apoptosis initiated by the PB1-F2 protein of IAV by using genetically sulfatide-produced cells and PB1-F2-deficient IAVs. Sulfatide-deficient COS7 cells showed no virus-induced apoptosis, whereas SulCOS1 cells, sulfatide-enriched COS7 cells that genetically expressed the two transferases required for sulfatide synthesis from ceramide, showed an increase in IAV replication and were susceptible to caspase-3-independent apoptosis. Additionally, PB1-F2-deficient IAVs, which were generated by using a plasmid-based reverse genetics system from a genetic background of A/WSN/33 (H1N1), demonstrated that PB1-F2 contributed to caspase-3-independent apoptosis in IAV-infected SulCOS1 cells. Our results show that sulfatide plays a critical role in efficient IAV propagation via caspase-3-independent apoptosis initiated by the PB1-F2 protein.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shzuoka, Japan
| | - Masahiro Takaguchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shzuoka, Japan
| | - Tatsuya Kawakami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shzuoka, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shzuoka, Japan
- * E-mail:
| |
Collapse
|
9
|
Takahashi T, Suzuki T. Role of sulfatide in normal and pathological cells and tissues. J Lipid Res 2012; 53:1437-50. [PMID: 22619219 DOI: 10.1194/jlr.r026682] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sulfatide is 3-O-sulfogalactosylceramide that is synthesized by two transferases (ceramide galactosyltransferase and cerebroside sulfotransferase) from ceramide and is specifically degraded by a sulfatase (arylsulfatase A). Sulfatide is a multifunctional molecule for various biological fields including the nervous system, insulin secretion, immune system, hemostasis/thrombosis, bacterial infection, and virus infection. Therefore, abnormal metabolism or expression change of sulfatide could cause various diseases. Here, we discuss the important biological roles of sulfatide in the nervous system, insulin secretion, immune system, hemostasis/thrombosis, cancer, and microbial infections including human immunodeficiency virus and influenza A virus. Our review will be helpful to achieve a comprehensive understanding of sulfatide, which serves as a fundamental target of prevention of and therapy for nervous disorders, diabetes mellitus, immunological diseases, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka and Global COE Program for Innovation in Human Health Sciences, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | |
Collapse
|
10
|
Abstract
BACKGROUND INFORMATION Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens. RESULTS We demonstrate that the VACV-WR (VACV Western-Reserve strain) displays no binding to Cer (ceramide) or to Gal-Cer (galactosylceramide), but binds to a natural sulfated derivative of these molecules: the Sulf (sulfatide) 3' sulfogalactosylceramide. The interaction between Sulf and VACV-WR resulted in a time-dependent inhibition of virus infection. Virus cell attachment was the crucial step inhibited by Sulf. Electron microscopy showed that SUVs (small unilamellar vesicles) enriched in Sulf bound to VACV particles. Both the A27 and L5 viral membrane proteins were shown to interact with Sulf, indicating that they could be the major viral ligands for Sulf. Soluble Sulf was successful in preventing mortality, but not morbidity, in a lethal mouse model infection with VACV-WR. CONCLUSIONS Together the results suggest that Sulf could play a role as an alternate receptor for VACV-WR and probably other Orthopoxviruses.
Collapse
|