1
|
Van Wieren A, Durrant JD, Majumdar S. Computational and experimental analyses of alanine racemase suggest new avenues for developing allosteric small-molecule antibiotics. Drug Dev Res 2023; 84:999-1007. [PMID: 37129190 PMCID: PMC10524904 DOI: 10.1002/ddr.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Given the ever-present threat of antibacterial resistance, there is an urgent need to identify new antibacterial drugs and targets. One such target is alanine racemase (Alr), an enzyme required for bacterial cell-wall biosynthesis. Alr is an attractive drug target because it is essential for bacterial survival but is absent in humans. Existing drugs targeting Alr lack specificity and have severe side effects. We here investigate alternative mechanisms of Alr inhibition. Alr functions exclusively as an obligate homodimer, so we probed seven conserved interactions on the dimer interface, distant from the enzymatic active site, to identify possible allosteric influences on activity. Using the Alr from Mycobacterium tuberculosis (MT) as a model, we found that the Lys261/Asp135 salt bridge is critical for catalytic activity. The Lys261Ala mutation completely inactivated the enzyme, and the Asp135Ala mutation reduced catalytic activity eight-fold. Further investigation suggested a potential drug-binding site near the Lys261/Asp135 salt bridge that may be useful for allosteric drug discovery.
Collapse
Affiliation(s)
- Arie Van Wieren
- Madia Department of Chemistry, Biochemistry, Physics and Engineering, Indiana University of Pennsylvania, Indiana, PA 15705
- Current address: The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Sudipta Majumdar
- Madia Department of Chemistry, Biochemistry, Physics and Engineering, Indiana University of Pennsylvania, Indiana, PA 15705
| |
Collapse
|
2
|
Xu S, Chu M, Zhang F, Zhao J, Zhang J, Cao Y, He G, Israr M, Zhao B, Ju J. Enhancement in the catalytic efficiency of D-amino acid oxidase from Glutamicibacter protophormiae by multiple amino acid substitutions. Enzyme Microb Technol 2023; 166:110224. [PMID: 36889103 DOI: 10.1016/j.enzmictec.2023.110224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
D-Amino acid oxidase (DAAO) is an imperative oxidoreductase that oxidizes D-amino acids to corresponding keto acids, producing ammonia and hydrogen peroxide. Previously, based on the sequence alignment of DAAO from Glutamicibacter protophormiae (GpDAAO-1) and (GpDAAO-2), 4 residues (E115, N119, T256, T286) at the surface regions of GpDAAO-2, were subjected to site-directed mutagenesis and achieved 4 single-point mutants with enhanced catalytic efficiency (kcat/Km) compared to parental GpDAAO-2. In the present study, to further enhance the catalytic efficiency of GpDAAO-2, a total of 11 (6 double, 4 triple, and 1 quadruple-point) mutants were prepared by the different combinations of 4 single-point mutants. All mutants and wild types were overexpressed, purified and enzymatically characterized. A triple-point mutant E115A/N119D/T286A exhibited the most significant improvement in catalytic efficiency as compared to wild-type GpDAAO-1 and GpDAAO-2. Structural modeling analysis elucidated that residue Y213 in loop region C209-Y219 might act as the active-site lid for controlling substrate access, the residue K256 substituted by threonine (K256T) might change the hydrogen bonding interaction between residue Y213 and the surrounding residues, and switch the conformation of the active-site lid from the closed state to the open state, resulting in the enhancement in substrate accessibility and catalytic efficiency.
Collapse
Affiliation(s)
- Shujing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Mengqiu Chu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China
| | - Fa Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiawei Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaqi Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuting Cao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guangzheng He
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Muhammad Israr
- Department of Biology, The University of Haripur, Haripur 22620, Pakistan.
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China.
| |
Collapse
|
3
|
Chaves GL, Batista RS, Cunha JDS, Oliveira DB, da Silva MR, Pisani GFD, Selistre-de-Araújo HS, Zangirolami TC, da Silva AJ. Improving 3-hydroxypropionic acid production in E. coli by in silico prediction of new metabolic targets. N Biotechnol 2022; 72:80-88. [PMID: 36272546 DOI: 10.1016/j.nbt.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
3-Hydroxypropionic acid (3-HP) production from renewable feedstocks is of great interest in efforts to develop greener processes for obtaining this chemical platform. Here we report an engineered E. coli strain for 3-HP production through the β-alanine pathway. To obtain a new strain capable of producing 3-HP, the pathway was established by overexpressing the enzymes pyruvate aminotransferase, 3-hydroxyacid dehydrogenase, and L-aspartate-1-decarboxylase. Further increase of the 3-HP titer was achieved using evolutionary optimizations of a genome-scale metabolic model of E. coli containing the adopted pathway. From these optimizations, three non-intuitive targets for in vivo assessment were identified: L-alanine aminotransferase and alanine racemase overexpression, and L-valine transaminase knock-out. The implementation of these targets in the production strain resulted in a 40% increase in 3-HP titer. The strain was further engineered to overexpress phosphoenolpyruvate carboxylase, reaching 0.79 ± 0.02 g/L of 3-HP when grown using glucose. Surprisingly, this strain produced 63% more of the desired product when grown using a mixture of glucose and xylose (1:1, C-mol), and gene expression analysis showed that the cellular adjustment to consume xylose had a positive impact on 3-HP accumulation. Fed-batch culture with xylose feeding led to a final titer of 29.1 g/L. These results reinforce the value of computational methods in strain engineering, enabling the design of more efficient strategies to be assessed. Moreover, higher production of 3-HP under a sugar mixture condition points towards the development of bioprocesses based on renewable resources, such as hemicellulose hydrolysates.
Collapse
Affiliation(s)
- Gabriel Luz Chaves
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Raquel Salgado Batista
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Josivan de Sousa Cunha
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Davi Benedito Oliveira
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Mateus Ribeiro da Silva
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil
| | - Graziéle Fernanda Deriggi Pisani
- Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | | | - Teresa Cristina Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Adilson José da Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
4
|
D-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition. Nat Chem Biol 2020; 16:686-694. [PMID: 32203411 PMCID: PMC7246083 DOI: 10.1038/s41589-020-0498-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/06/2020] [Indexed: 11/08/2022]
Abstract
The broad-spectrum antibiotic D-cycloserine (DCS) is a key component of regimens used to treat multi- and extensively drug-resistant tuberculosis. DCS, a structural analog of D-alanine, binds to and inactivates two essential enzymes involved in peptidoglycan biosynthesis, alanine racemase (Alr) and D-Ala:D-Ala ligase. Inactivation of Alr is thought to proceed via a mechanism-based irreversible route, forming an adduct with the pyridoxal 5'-phosphate cofactor, leading to bacterial death. Inconsistent with this hypothesis, Mycobacterium tuberculosis Alr activity can be detected after exposure to clinically relevant DCS concentrations. To address this paradox, we investigated the chemical mechanism of Alr inhibition by DCS. Inhibition of M. tuberculosis Alr and other Alrs is reversible, mechanistically revealed by a previously unidentified DCS-adduct hydrolysis. Dissociation and subsequent rearrangement to a stable substituted oxime explains Alr reactivation in the cellular milieu. This knowledge provides a novel route for discovery of improved Alr inhibitors against M. tuberculosis and other bacteria.
Collapse
|
5
|
Biochemical characterization and mutational analysis of alanine racemase from Clostridium perfringens. J Biosci Bioeng 2019; 128:149-155. [DOI: 10.1016/j.jbiosc.2019.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 11/24/2022]
|
6
|
Dong H, Han Q, Guo Y, Ju J, Wang S, Yuan C, Long W, He X, Xu S, Li S. Enzymatic characterization and crystal structure of biosynthetic alanine racemase from Pseudomonas aeruginosa PAO1. Biochem Biophys Res Commun 2018; 503:2319-2325. [PMID: 29964014 DOI: 10.1016/j.bbrc.2018.06.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 02/02/2023]
Abstract
Alanine racemase is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that reversibly catalyzes the conversion of l-alanine to d-alanine. d-alanine is an essential constituent in many prokaryotic cell structures. Inhibition of alanine racemase is lethal to prokaryotes, creating an attractive target for designing antibacterial drugs. Here we report the crystal structure of biosynthetic alanine racemase (Alr) from a pathogenic bacteria Pseudomonas aeruginosa PAO1. Structural studies showed that P. aeruginosa Alr (PaAlr) adopts a conserved homodimer structure. A guest substrate d-lysine was observed in the active site and refined to dual-conformation. Two buffer ions, malonate and acetate, were bound in the proximity to d-lysine. Biochemical characterization revealed the optimal reaction conditions for PaAlr.
Collapse
Affiliation(s)
- Hui Dong
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Qingqing Han
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yu Guo
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Long
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xin He
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Shujing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Sheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
7
|
Structural features and kinetic characterization of alanine racemase from Bacillus pseudofirmus OF4. Biochem Biophys Res Commun 2018; 497:139-145. [DOI: 10.1016/j.bbrc.2018.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 02/02/2023]
|
8
|
Structural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2). Biochem Biophys Res Commun 2017; 483:122-128. [DOI: 10.1016/j.bbrc.2016.12.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 02/02/2023]
|
9
|
Knight AM, Nobili A, van den Bergh T, Genz M, Joosten HJ, Albrecht D, Riedel K, Pavlidis IV, Bornscheuer UT. Bioinformatic analysis of fold-type III PLP-dependent enzymes discovers multimeric racemases. Appl Microbiol Biotechnol 2016; 101:1499-1507. [DOI: 10.1007/s00253-016-7940-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
10
|
Sun X, He G, Wang X, Xu S, Ju J, Xu X. Crystal Structure of a Thermostable Alanine Racemase from Thermoanaerobacter tengcongensis MB4 Reveals the Role of Gln360 in Substrate Selection. PLoS One 2015. [PMID: 26218070 PMCID: PMC4517790 DOI: 10.1371/journal.pone.0133516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pyridoxal 5’-phosphate (PLP) dependent alanine racemase catalyzes racemization of L-Ala to D-Ala, a key component of the peptidoglycan network in bacterial cell wall. It has been extensively studied as an important antimicrobial drug target due to its restriction in eukaryotes. However, many marketed alanine racemase inhibitors also act on eukaryotic PLP-dependent enzymes and cause side effects. A thermostable alanine racemase (AlrTt) from Thermoanaerobacter tengcongensis MB4 contains an evolutionarily non-conserved residue Gln360 in inner layer of the substrate entryway, which is supposed to be a key determinant in substrate specificity. Here we determined the crystal structure of AlrTt in complex with L-Ala at 2.7 Å resolution, and investigated the role of Gln360 by saturation mutagenesis and kinetic analysis. Compared to typical bacterial alanine racemase, presence of Gln360 and conformational changes of active site residues disrupted the hydrogen bonding interactions necessary for proper PLP immobilization, and decreased both the substrate affinity and turnover number of AlrTt. However, it could be complemented by introduction of hydrophobic amino acids at Gln360, through steric blocking and interactions with a hydrophobic patch near active site pocket. These observations explained the low racemase activity of AlrTt, revealed the essential role of Gln360 in substrate selection, and its preference for hydrophobic amino acids especially Tyr in bacterial alanine racemization. Our work will contribute new insights into the alanine racemization mechanism for antimicrobial drug development.
Collapse
Affiliation(s)
- Xiaoliang Sun
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Guangzheng He
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiaoyan Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Shujing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, China
- * E-mail: (JSJ); (XLX)
| | - Xiaoling Xu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
- * E-mail: (JSJ); (XLX)
| |
Collapse
|
11
|
Zhou H, Li Z, Zhang G, Xu S, Tang Z, Zhu X, Dong H, Ju J. Crystallization and preliminary X-ray study of biosynthetic alanine racemase from Pseudomonas aeruginosa PAO1. Acta Crystallogr F Struct Biol Commun 2014; 70:1616-9. [PMID: 25484210 PMCID: PMC4259224 DOI: 10.1107/s2053230x14022432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/13/2014] [Indexed: 11/10/2022] Open
Abstract
Biosynthetic alanine racemase (AlrPA) from Pseudomonas aeruginosa PAO1 carrying a His6 tag was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni(2+)-chelating affinity and anion-exchange chromatography for X-ray crystallographic analysis. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K in a solution consisting of 4%(v/v) Tacsimate pH 5.0, 14%(w/v) polyethylene glycol 3350 with a protein concentration of 8 mg ml(-1). The crystal diffracted to 2.76 Å resolution and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 74.12, b = 76.97, c = 154.80 Å, α = β = γ = 90°.
Collapse
Affiliation(s)
- Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, People’s Republic of China
| | - Zhenzhen Li
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People’s Republic of China
| | - Guofang Zhang
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People’s Republic of China
| | - Shujing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People’s Republic of China
| | - Zhaona Tang
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People’s Republic of China
| | - Xianming Zhu
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People’s Republic of China
| | - Hui Dong
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, People’s Republic of China
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People’s Republic of China
| |
Collapse
|
12
|
Gaffney D, Abdallah NH, Cooney JC, Laffir FR, Cassimjee KE, Berglund P, Hanefeld U, Magner E. Preparation and characterisation of a Ni2+/Co2+-cyclam modified mesoporous cellular foam for the specific immobilisation of His6-alanine racemase. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Asojo OA, Nelson SK, Mootien S, Lee Y, Rezende WC, Hyman DA, Matsumoto MM, Reiling S, Kelleher A, Ledizet M, Koski RA, Anthony KG. Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1922-33. [PMID: 25004969 PMCID: PMC4089486 DOI: 10.1107/s1399004714009419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/26/2014] [Indexed: 05/04/2024]
Abstract
Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudomembranous colitis. The severity of C. difficile infections is exacerbated by the emergence of hypervirulent and multidrug-resistant strains, which are difficult to treat and are often associated with increased mortality rates. Alanine racemase (Alr) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible racemization of L- and D-alanine. Since D-alanine is an essential component of the bacterial cell-wall peptidoglycan, and there are no known Alr homologs in humans, this enzyme is being tested as an antibiotic target. Cycloserine is an antibiotic that inhibits Alr. In this study, the catalytic properties and crystal structures of recombinant Alr from the virulent and multidrug-resistant C. difficile strain 630 are presented. Three crystal structures of C. difficile Alr (CdAlr), corresponding to the complex with PLP, the complex with cycloserine and a K271T mutant form of the enzyme with bound PLP, are presented. The structures are prototypical Alr homodimers with two active sites in which the cofactor PLP and cycloserine are localized. Kinetic analyses reveal that the K271T mutant CdAlr has the highest catalytic constants reported to date for any Alr. Additional studies are needed to identify the basis for the high catalytic activity. The structural and activity data presented are first steps towards using CdAlr for the development of structure-based therapeutics for C. difficile infections.
Collapse
Affiliation(s)
- Oluwatoyin A. Asojo
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah K. Nelson
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Mootien
- L Diagnostics LLC, 300 George Street, New Haven, CT 06511, USA
| | - Yashang Lee
- L Diagnostics LLC, 300 George Street, New Haven, CT 06511, USA
| | - Wanderson C. Rezende
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel A. Hyman
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica M. Matsumoto
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Scott Reiling
- Pathology and Microbiology Department, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Alan Kelleher
- National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michel Ledizet
- L Diagnostics LLC, 300 George Street, New Haven, CT 06511, USA
| | | | | |
Collapse
|
14
|
Identification, purification, and characterization of a novel amino acid racemase, isoleucine 2-epimerase, from Lactobacillus species. J Bacteriol 2013; 195:5207-15. [PMID: 24039265 DOI: 10.1128/jb.00709-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min(-1)·mg(-1), respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min(-1)·mg(-1), respectively. Hydroxylamine and other inhibitors of pyridoxal 5'-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5'-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.
Collapse
|
15
|
Xue Z, Hu Y, Xu S, Ohnishi K, Ma Y, Ju J, Zhao B. Characterization and preliminary mutation analysis of a thermostable alanine racemase from Thermoanaerobacter tengcongensis MB4. Extremophiles 2013; 17:611-21. [PMID: 23703245 DOI: 10.1007/s00792-013-0545-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
Abstract
A thermostable alanine racemase from Thermoanaerobacter tengcongensis MB4 was successfully expressed in Escherichia coli and characterized. The full-length gene MBalr2 (1164 bp) encodes 388 amino acid residues including 6 out of 8 highly conserved amino acid residues at the entryway to the active site of alanine racemase. Recombinant MBAlr2 and three mutants (S171A, H359Y and double mutation S171A/H359Y) of MBAlr2 were purified by His6-tag affinity column and gel filtration chromatography. The purified protein MBAlr2 was a dimeric PLP-dependent enzyme with broad substrate specificity. The optimal racemization temperature and pH were 70-75 °C and 11.0, respectively. The kinetic parameters K m and V max of MBAlr2 at 70 °C, determined by HPLC, were 20.16 mM and 1414 μmol min(-1) for L-alanine, and 9.95 mM and 702.6 μmol min(-1) for D-alanine, respectively. Enzymatic assays showed that the activity of both mutants (S171A and H359Y) was lost, but the activity of mutant S171A/H359Y was recovered to 69.8 % of wild type, which suggested that residues Ser171 and His359 might be the important residues for catalytic mechanisms of MBAlr2.
Collapse
Affiliation(s)
- Zhangwei Xue
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Lee Y, Mootien S, Shoen C, Destefano M, Cirillo P, Asojo OA, Yeung KR, Ledizet M, Cynamon MH, Aristoff PA, Koski RA, Kaplan PA, Anthony KG. Inhibition of mycobacterial alanine racemase activity and growth by thiadiazolidinones. Biochem Pharmacol 2013; 86:222-30. [PMID: 23680030 DOI: 10.1016/j.bcp.2013.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/25/2022]
Abstract
The genus Mycobacterium includes non-pathogenic species such as M. smegmatis, and pathogenic species such as M. tuberculosis, the causative agent of tuberculosis (TB). Treatment of TB requires a lengthy regimen of several antibiotics, whose effectiveness has been compromised by the emergence of resistant strains. New antibiotics that can shorten the treatment course and those that have not been compromised by bacterial resistance are needed. In this study, we report that thiadiazolidinones, a relatively little-studied heterocyclic class, inhibit the activity of mycobacterial alanine racemase, an essential enzyme that converts l-alanine to d-alanine for peptidoglycan synthesis. Twelve members of the thiadiazolidinone family were evaluated for inhibition of M. tuberculosis and M. smegmatis alanine racemase activity and bacterial growth. Thiadiazolidinones inhibited M. tuberculosis and M. smegmatis alanine racemases to different extents with 50% inhibitory concentrations (IC50) ranging from <0.03 to 28μM and 23 to >150μM, respectively. The compounds also inhibited the growth of these bacteria, including multidrug resistant strains of M. tuberculosis. The minimal inhibitory concentrations (MIC) for drug-susceptible M. tuberculosis and M. smegmatis ranged from 6.25μg/ml to 100μg/ml, and from 1.56 to 6.25μg/ml for drug-resistant M. tuberculosis. The in vitro activities of thiadiazolidinones suggest that this family of compounds might represent starting points for medicinal chemistry efforts aimed at developing novel antimycobacterial agents.
Collapse
Affiliation(s)
- Yashang Lee
- L2 Diagnostics LLC, 300 George St., New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu J, Feng L, Shi Y, Feng W. Crystallization and preliminary X-ray diffraction analysis of alanine racemase from Pseudomonas putida YZ-26. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1240-2. [PMID: 23027757 DOI: 10.1107/s1744309112036974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/27/2012] [Indexed: 11/10/2022]
Abstract
A recombinant form of alanine racemase (Alr) from Pseudomonas putida YZ-26 has been crystallized by the sitting-drop vapour diffusion method. X-ray diffraction data were collected to 2.4 Å resolution. The crystals belong to the space group C222(1), with unit-cell parameters a = 118.08, b = 141.86, c = 113.83 Å, and contain an Alr dimer in the asymmetric unit. The Matthews coefficient and the solvent content were calculated to be 2.8 Å(3) Da(-1) and approximately 50%, respectively.
Collapse
Affiliation(s)
- Junlin Liu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Shanxi University, Taiyuan, People's Republic of China
| | | | | | | |
Collapse
|
18
|
Scaletti ER, Luckner SR, Krause KL. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50). ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:82-92. [PMID: 22194336 PMCID: PMC3245724 DOI: 10.1107/s0907444911050682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/25/2011] [Indexed: 11/10/2022]
Abstract
Staphylococcus aureus is an opportunistic Gram-positive bacterium which causes a wide variety of diseases ranging from minor skin infections to potentially fatal conditions such as pneumonia, meningitis and septicaemia. The pathogen is a leading cause of nosocomial acquired infections, a problem that is exacerbated by the existence of methicillin- and glycopeptide antibiotic-resistant strains which can be challenging to treat. Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent enzyme which catalyzes reversible racemization between enantiomers of alanine. As D-alanine is an essential component of the bacterial cell-wall peptidoglycan, inhibition of Alr is lethal to prokaryotes. Additionally, while ubiquitous amongst bacteria, this enzyme is absent in humans and most eukaryotes, making it an excellent antibiotic drug target. The crystal structure of S. aureus alanine racemase (Alr(Sas)), the sequence of which corresponds to that from the highly antibiotic-resistant Mu50 strain, has been solved to 2.15 Å resolution. Comparison of the Alr(Sas) structure with those of various alanine racemases demonstrates a conserved overall fold, with the enzyme sharing most similarity to those from other Gram-positive bacteria. Structural examination indicates that the active-site binding pocket, dimer interface and active-site entryway of the enzyme are potential targets for structure-aided inhibitor design. Kinetic constants were calculated in this study and are reported here. The potential for a disulfide bond in this structure is noted. This structural and biochemical information provides a template for future structure-based drug-development efforts targeting Alr(Sas).
Collapse
Affiliation(s)
- Emma R. Scaletti
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sylvia R. Luckner
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C. Drug Discovery Targeting Amino Acid Racemases. Chem Rev 2011; 111:6919-46. [DOI: 10.1021/cr2000702] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Conti
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS-URA 2185, Département de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosoma; Département d’Infection et Epidémiologie; 25 rue du Dr. Roux, 75724 Paris, France
| | - Andrea Mozzarelli
- Dipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy
- Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Roma, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
20
|
Liu JL, Liu XQ, Shi YW. Expression, purification, and characterization of alanine racemase from Pseudomonas putida YZ-26. World J Microbiol Biotechnol 2011; 28:267-74. [PMID: 22806802 DOI: 10.1007/s11274-011-0816-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 06/07/2011] [Indexed: 12/26/2022]
Abstract
Alanine racemase catalyzes the interconversion of D: - and L: -alanine and plays an important role in supplying D: -alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET-alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His(6)-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni(2+)-NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with L: -alanine and L: -isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0-11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr(2+), Mn(2+), Co(2+), and Ni(2+) obviously enhanced enzymatic activity, while the Cu(2+) ion showed inhibitory effects.
Collapse
Affiliation(s)
- Jun-Lin Liu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, 92 Wucheng Road, Taiyuan, People's Republic of China
| | | | | |
Collapse
|
21
|
Im H, Sharpe ML, Strych U, Davlieva M, Krause KL. The crystal structure of alanine racemase from Streptococcus pneumoniae, a target for structure-based drug design. BMC Microbiol 2011; 11:116. [PMID: 21612658 PMCID: PMC3146814 DOI: 10.1186/1471-2180-11-116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 05/25/2011] [Indexed: 11/17/2022] Open
Abstract
Background Streptococcus pneumoniae is a globally important pathogen. The Gram-positive diplococcus is a leading cause of pneumonia, otitis media, bacteremia, and meningitis, and antibiotic resistant strains have become increasingly common over recent years.
Alanine racemase is a ubiquitous enzyme among bacteria and provides the essential cell wall precursor, D-alanine. Since it is absent in humans, this enzyme is an attractive target for the development of drugs against S. pneumoniae and other bacterial pathogens. Results Here we report the crystal structure of alanine racemase from S. pneumoniae (AlrSP). Crystals diffracted to a resolution of 2.0 Å and belong to the space group P3121 with the unit cell parameters a = b = 119.97 Å, c = 118.10 Å, α = β = 90° and γ = 120°. Structural comparisons show that AlrSP shares both an overall fold and key active site residues with other bacterial alanine racemases. The active site cavity is similar to other Gram positive alanine racemases, featuring a restricted but conserved entryway. Conclusions We have solved the structure of AlrSP, an essential step towards the development of an accurate pharmacophore model of the enzyme, and an important contribution towards our on-going alanine racemase structure-based drug design project. We have identified three regions on the enzyme that could be targeted for inhibitor design, the active site, the dimer interface, and the active site entryway.
Collapse
Affiliation(s)
- Hookang Im
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|