1
|
Viana AR, Bottari NB, Oviedo VR, Santos D, Londero JEL, Schetinger MRC, Flores EMM, Pigatto A, Schuch AP, Krause A, Krause LMF. Phytochemical and biological characterization of aqueous extract of Vassobia breviflora on proliferation and viability of melanoma cells: involvement of purinergic pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:632-652. [PMID: 37434435 DOI: 10.1080/15287394.2023.2233989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Vassobia breviflora belongs to the Solanaceae family, possessing biological activity against tumor cells and is a promising alternative for therapy. The aim of this investigation was to determine the phytochemical properties V. breviflora using ESI-ToF-MS. The cytotoxic effects of this extract were examined in B16-F10 melanoma cells and the relationship if any to purinergic signaling was involved. The antioxidant activity of total phenols, (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was analyzed, as well as production of reactive oxygen species (ROS) and nitric oxide (NO) was determined. Genotoxicity was assessed by DNA damage assay. Subsequently, the structural bioactive compounds were docked against purinoceptors P2X7 and P2Y1 receptors. The bioactive compounds found in V. breviflora were N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline, calystegine B, 12-O-benzoyl- tenacigenin A and bungoside B. In vitro cytotoxicity was demonstrated at concentration ranges of 0.1-10 mg/ml, and plasmid DNA breaks only at the concentration of 10 mg/ml. V. breviflora extracts affected hydrolysis by ectoenzymes, such as ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ectoadenosine deaminase (E-ADA) which control levels of degradation and formation of nucleosides and nucleotides. In the presence of substrates ATP, ADP, AMP and adenosine, the activities of E-NTPDase, 5´-NT or E-ADA were significantly modulated by V. breviflora. N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline presented higher binding affinity (according to receptor-ligand complex estimated binding affinity as evidenced by ∆G values) to bind to both P2X7 and P2Y1purinergic receptors.Our results suggest a putative interaction of V. breviflora bioactive compounds with growth inhibitory potential in B16-F10 melanoma and suggest that may be considered as promising compounds in melanoma and cancer treatment.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Daniel Santos
- Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | - Aline Pigatto
- Postgraduate Program in Teaching Science and Mathematics, Franciscan University, Santa Maria, Brazil
| | - André Passaglia Schuch
- Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Alexandre Krause
- Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
2
|
Lokhande KB, Pawar SV, Madkaiker S, Nawani N, Venkateswara SK, Ghosh P. High throughput virtual screening and molecular dynamics simulation analysis of phytomolecules against BfmR of Acinetobacter baumannii: anti-virulent drug development campaign. J Biomol Struct Dyn 2022; 41:2698-2712. [PMID: 35156902 DOI: 10.1080/07391102.2022.2038271] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acinetobacter baumannii is a notorious multidrug resistant bacterium responsible for several hospital acquired infections assisted by its capacity to develop biofilms. A. baumannii BfmR (RstA), a response regulator from the BfmR/S two-component signal transduction system, is the major controller of A. baumannii biofilm development and formation. As a result, BfmR represents a novel target for anti-biofilm treatment against A. baumannii. The discovery of the high-resolution crystal structure of BfmR provides a good chance for computational screening of its probable inhibitors. Therefore, in this study we aim to search new, less toxic, and natural BfmR inhibitors from 8450 phytomolecules available in the Indian Medicinal Plants, Phytochemistry and Therapeutic (IMPPAT) database by analyzing molecular docking against BfmR (PDB ID: 6BR7). Out of these 8450 phytomolecules 6742 molecules were successfully docked with BfmR with the docking score range -6.305 kcal/mol to +5.120 kcal/mol. Structure based-molecular docking (SB-MD) and ADMET (absorption, distribution, metabolism, excretion, & toxicity) profile examination revealed that Norepinephrine, Australine, Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline phytocompounds strongly binds to the active site residues of BfmR. Furthermore, molecular dynamics simulation (MDS) studies for 100 ns and the binding free energy (MM/GBSA) analysis elucidated the binding mechanism of Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline to BfmR. In summary, these phytocompounds seems to have the promising molecules against BfmR, and thus necessitates further verification by both in vitro and in vivo experiments. HighlightsBfmR plays a key role in biofilm development and exopolysaccharide (EPS) synthesis in A. baumannii.Computational approach to search for promising BfmR inhibitors from IMPAAT database.The lead phytomolecules such as Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline displayed significant binding with BfmR active site.The outcome of BfmR binding phytomolecules has broadened the scope of hit molecules validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Dr. D. Y. Patil Vidyapeeth, Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Sarika Vishnu Pawar
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Smriti Madkaiker
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Neelu Nawani
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Swamy K Venkateswara
- Bioinformatics Research Group, MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
3
|
Katsube M, Ebara N, Maeda M, Kimura Y. Cytosolic Free N-Glycans Are Retro-Transported Into the Endoplasmic Reticulum in Plant Cells. FRONTIERS IN PLANT SCIENCE 2021; 11:610124. [PMID: 33537045 PMCID: PMC7847903 DOI: 10.3389/fpls.2020.610124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
During endoplasmic reticulum (ER)-associated degradation, free N-glycans (FNGs) are produced from misfolded nascent glycoproteins via the combination of the cytosolic peptide N-glycanase (cPNGase) and endo-β-N-acetylglucosaminidase (ENGase) in the plant cytosol. The resulting high-mannose type (HMT)-FNGs, which carry one GlcNAc residue at the reducing end (GN1-FNGs), are ubiquitously found in developing plant cells. In a previous study, we found that HMT-FNGs assisted in protein folding and inhibited β-amyloid fibril formation, suggesting a possible biofunction of FNGs involved in the protein folding system. However, whether these HMT-FNGs occur in the ER, an organelle involved in protein folding, remained unclear. On the contrary, we also reported the presence of plant complex type (PCT)-GN1-FNGs, which carry the Lewisa epitope at the non-reducing end, indicating that these FNGs had been fully processed in the Golgi apparatus. Since plant ENGase was active toward HMT-N-glycans but not PCT-N-glycans that carry β1-2xylosyl and/or α1-3 fucosyl residue(s), these PCT-GN1-FNGs did not appear to be produced from fully processed glycoproteins that harbored PCT-N-glycans via ENGase activity. Interestingly, PCT-GN1-FNGs were found in the extracellular space, suggesting that HMT-GN1-FNGs formed in the cytosol might be transported back to the ER and processed in the Golgi apparatus through the protein secretion pathway. As the first step in elucidating the production mechanism of PCT-GN1-FNGs, we analyzed the structures of free oligosaccharides in plant microsomes and proved that HMT-FNGs (Man9-7GlcNAc1 and Man9-8GlcNAc2) could be found in microsomes, which almost consist of the ER compartments.
Collapse
|
4
|
Wang HY, Kato A, Kinami K, Li YX, Fleet GWJ, Yu CY. Concise synthesis of calystegines B2 and B3via intramolecular Nozaki-Hiyama-Kishi reaction. Org Biomol Chem 2016; 14:4885-96. [PMID: 27161660 DOI: 10.1039/c6ob00697c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The key step in the concise syntheses of calystegine B2 and its C-2 epimer calystegine B3 was the construction of cycloheptanone 8via an intramolecular Nozaki-Hiyama-Kishi (NHK) reaction of 9, an aldehyde containing a Z-vinyl iodide. Vinyl iodide 9 was obtained by the Stork olefination of aldehyde 10, derived from carbohydrate starting materials. Calystegines B2 (3) and B3 (4) were synthesized from d-xylose and l-arabinose derivatives respectively in 11 steps in excellent overall yields (27% and 19%).
Collapse
Affiliation(s)
- Hong-Yao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
5
|
Harada Y, Hirayama H, Suzuki T. Generation and degradation of free asparagine-linked glycans. Cell Mol Life Sci 2015; 72:2509-33. [PMID: 25772500 PMCID: PMC11113800 DOI: 10.1007/s00018-015-1881-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Asparagine (N)-linked protein glycosylation, which takes place in the eukaryotic endoplasmic reticulum (ER), is important for protein folding, quality control and the intracellular trafficking of secretory and membrane proteins. It is known that, during N-glycosylation, considerable amounts of lipid-linked oligosaccharides (LLOs), the glycan donor substrates for N-glycosylation, are hydrolyzed to form free N-glycans (FNGs) by unidentified mechanisms. FNGs are also generated in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins during ER-associated degradation. FNGs derived from LLOs and misfolded glycoproteins are eventually merged into one pool in the cytosol and the various glycan structures are processed to a near homogenous glycoform. This article summarizes the current state of our knowledge concerning the formation and catabolism of FNGs.
Collapse
Affiliation(s)
- Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
6
|
Brühlmann D, Jordan M, Hemberger J, Sauer M, Stettler M, Broly H. Tailoring recombinant protein quality by rational media design. Biotechnol Prog 2015; 31:615-29. [DOI: 10.1002/btpr.2089] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/04/2015] [Indexed: 02/07/2023]
Affiliation(s)
- David Brühlmann
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
- Dept. of Biotechnology and Biophysics; Julius-Maximilians-Universität Würzburg, Biozentrum; Am Hubland DE-97074 Würzburg Germany
| | - Martin Jordan
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
| | - Jürgen Hemberger
- Inst. for Biochemical Engineering and Analytics; University of Applied Sciences Giessen; Wiesenstrasse 14, DE-35390 Giessen Germany
| | - Markus Sauer
- Dept. of Biotechnology and Biophysics; Julius-Maximilians-Universität Würzburg, Biozentrum; Am Hubland DE-97074 Würzburg Germany
| | - Matthieu Stettler
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
| | - Hervé Broly
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
| |
Collapse
|
7
|
Suzuki T, Harada Y. Non-lysosomal degradation pathway for N-linked glycans and dolichol-linked oligosaccharides. Biochem Biophys Res Commun 2014; 453:213-9. [PMID: 24866240 DOI: 10.1016/j.bbrc.2014.05.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 01/11/2023]
Abstract
There is growing evidence that asparagine (N)-linked glycans play pivotal roles in protein folding and intra- or intercellular trafficking of N-glycosylated proteins. During the N-glycosylation of proteins, significant amounts of free oligosaccharides (fOSs) and phosphorylated oligosaccharides (POSs) are generated at the endoplasmic reticulum (ER) membrane by unclarified mechanisms. fOSs are also formed in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins destined for proteasomal degradation. This article summarizes the current knowledge of the molecular and regulatory mechanisms underlying the formation of fOSs and POSs in mammalian cells and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Japan.
| | - Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Japan
| |
Collapse
|
8
|
Synthesis and biological evaluation of N-(2-fluorophenyl)-2β-deoxyfuconojirimycin acetamide as a potent inhibitor for α-l-fucosidases. Bioorg Med Chem 2013; 21:6565-73. [DOI: 10.1016/j.bmc.2013.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 11/23/2022]
|
9
|
Seino J, Wang L, Harada Y, Huang C, Ishii K, Mizushima N, Suzuki T. Basal autophagy is required for the efficient catabolism of sialyloligosaccharides. J Biol Chem 2013; 288:26898-907. [PMID: 23880766 DOI: 10.1074/jbc.m113.464503] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy is an essential, homeostatic process involving degradation of a cell's own components; it plays a role in catabolizing cellular components, such as protein or lipids, and damaged or excess organelles. Here, we show that in Atg5(-/-) cells, sialyloligosaccharides specifically accumulated in the cytosol. Accumulation of these glycans was observed under non-starved conditions, suggesting that non-induced, basal autophagy is essential for their catabolism. Interestingly, once accumulated in the cytosol, sialylglycans cannot be efficiently catabolized by resumption of the autophagic process, suggesting that functional autophagy is important for preventing sialyloligosaccharides from accumulating in the cytosol. Moreover, knockdown of sialin, a lysosomal transporter of sialic acids, resulted in a significant reduction of sialyloligosaccharides, implying that autophagy affects the substrate specificity of this transporter. This study thus provides a surprising link between basal autophagy and catabolism of N-linked glycans.
Collapse
Affiliation(s)
- Junichi Seino
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Max Planck Joint Research Center, RIKEN Global Research Cluster, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang L, Suzuki T. Dual functions for cytosolic α-mannosidase (Man2C1): its down-regulation causes mitochondria-dependent apoptosis independently of its α-mannosidase activity. J Biol Chem 2013; 288:11887-96. [PMID: 23486476 DOI: 10.1074/jbc.m112.425702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytosolic α-mannosidase (Man2C1) trims free oligosaccharides in mammalian cells, and its down-regulation reportedly delays cancer growth by inducing mitotic arrest or apoptosis. However, the mechanism by which Man2C1 down-regulation induces apoptosis is unknown. Here, we demonstrated that silencing of Man2C1 via small hairpin RNAs induced mitochondria-dependent apoptosis in HeLa cells. Expression of CHOP (C/EBP homologous protein), a transcription factor critical to endoplasmic reticulum stress-induced apoptosis, was significantly up-regulated in Man2C1 knockdown cells. However, this enhanced CHOP expression was not caused by endoplasmic reticulum stress. Interestingly, Man2C1 catalytic activity was not required for this regulation of apoptosis; introduction of mutant, enzymatically inactive Man2C1 rescued apoptotic phenotypes of Man2C1 knockdown cells. These results show that Man2C1 has dual functions: one in glycan catabolism and another in apoptotic signaling.
Collapse
Affiliation(s)
- Li Wang
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
11
|
Kyne SH, Miles JAL, Percy JM, Singh K. Executing and Rationalizing the Synthesis of a Difluorinated Analogue of a Ring-Expanded Calystegine B2. J Org Chem 2011; 77:991-8. [DOI: 10.1021/jo2022845] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sara H. Kyne
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U. K
| | - Jonathan A. L. Miles
- Department of Chemistry, University of Leicester, University Road, Leicester
LE1 7RH, U. K
| | - Jonathan M. Percy
- WestCHEM, Department of Pure
and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U. K
| | - Kuldip Singh
- Department of Chemistry, University of Leicester, University Road, Leicester
LE1 7RH, U. K
| |
Collapse
|
12
|
Hirayama H, Suzuki T. Metabolism of free oligosaccharides is facilitated in the och1Δ mutant of Saccharomyces cerevisiae. Glycobiology 2011; 21:1341-8. [PMID: 21622726 DOI: 10.1093/glycob/cwr073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic cells, it is known that N-glycans play a pivotal role in quality control of carrier proteins. Although "free" forms of oligosaccharides (fOSs) are known to be accumulated in the cytosol, the precise mechanism of their formation, degradation and biological relevance remains poorly understood. It has been shown that, in budding yeast, almost all fOSs are formed from misfolded glycoproteins. Precise structural analysis of fOSs revealed that several yeast fOSs bear a yeast-specific modification by Golgi-resident α-1,6-mannosyltransferase, Och1. In this study, structural diversity of fOSs in och1Δ cells was analyzed. To our surprise, several fOSs in och1Δ cells have unusual α-1,3-linked mannose residues at their non-reducing termini. These mannose residues were not observed in wild-type cells, suggesting that the addition of these unique mannoses occurred as a compensation of Och1 defect. A significant increase in the amount of fOSs modified by Golgi-localized mannosyltransferases was also observed in och1Δ cells. Moreover, the amount of processed fOSs and intracellular α-mannosidase (Ams1) both increased in this mutant. Up-regulation of Ams1 activity was also apparent for cells treated with cell wall perturbation reagent. These results provide an insight into a possible link between catabolism of fOSs and cell wall stress.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | | |
Collapse
|