1
|
Abstract
High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.
Collapse
|
2
|
Videlock EJ, Mahurkar-Joshi S, Hoffman JM, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. Sigmoid colon mucosal gene expression supports alterations of neuronal signaling in irritable bowel syndrome with constipation. Am J Physiol Gastrointest Liver Physiol 2018; 315:G140-G157. [PMID: 29565640 PMCID: PMC6109711 DOI: 10.1152/ajpgi.00288.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/31/2023]
Abstract
Peripheral factors likely play a role in at least a subset of irritable bowel syndrome (IBS) patients. Few studies have investigated mucosal gene expression using an unbiased approach. Here, we performed mucosal gene profiling in a sex-balanced sample to identify relevant signaling pathways and gene networks and compare with publicly available profiling data from additional cohorts. Twenty Rome III+ IBS patients [10 IBS with constipation (IBS-C), 10 IBS with diarrhea (IBS-D), 5 men/women each), and 10 age-/sex-matched healthy controls (HCs)] underwent sigmoidoscopy with biopsy for gene microarray analysis, including differential expression, weighted gene coexpression network analysis (WGCNA), gene set enrichment analysis, and comparison with publicly available data. Expression levels of 67 genes were validated in an expanded cohort, including the above samples and 18 additional participants (6 each of IBS-C, IBS-D, HCs) using NanoString nCounter technology. There were 1,270 differentially expressed genes (FDR < 0.05) in IBS-C vs. HCs but none in IBS or IBS-D vs. HCs. WGNCA analysis identified activation of the cAMP/protein kinase A signaling pathway. Nine of 67 genes were validated by the NanoString nCounter technology (FDR < 0.05) in the expanded sample. Comparison with publicly available microarray data from the Mayo Clinic and University of Nottingham supports the reproducibility of 17 genes from the microarray analysis and three of nine genes validated by nCounter in IBS-C vs. HCs. This study supports the involvement of peripheral mechanisms in IBS-C, particularly pathways mediating neuronal signaling. NEW & NOTEWORTHY Peripheral factors play a role in the pathophysiology of irritable bowel syndrome (IBS), which, to date, has been mostly evident in IBS with diarrhea. Here, we show that sigmoid colon mucosal gene expression profiles differentiate IBS with constipation from healthy controls. These profiling data and analysis of additional cohorts also support the concept that peripheral neuronal pathways contribute to IBS pathophysiology.
Collapse
Affiliation(s)
- Elizabeth J Videlock
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Jill M Hoffman
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| |
Collapse
|
3
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
4
|
Combinatorial control of gene expression. BIOMED RESEARCH INTERNATIONAL 2013; 2013:407263. [PMID: 24069600 PMCID: PMC3771257 DOI: 10.1155/2013/407263] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/07/2013] [Accepted: 07/21/2013] [Indexed: 02/02/2023]
Abstract
The complexity and diversity of eukaryotic organisms are a feat of nature's engineering. Pulling the strings of such an intricate machinery requires an even more masterful and crafty approach. Only the number and type of responses that they generate exceed the staggering proportions of environmental signals perceived and processed by eukaryotes. Hence, at first glance, the cell's sparse stockpile of controlling factors does not seem remotely adequate to carry out this response. The question as to how eukaryotes sense and respond to environmental cues has no single answer. It is an amalgamation, an interplay between several processes, pathways, and factors—a combinatorial control. A short description of some of the most important elements that operate this entire conglomerate is given in this paper.
Collapse
|
5
|
Malarkey CS, Churchill MEA. The high mobility group box: the ultimate utility player of a cell. Trends Biochem Sci 2012; 37:553-62. [PMID: 23153957 DOI: 10.1016/j.tibs.2012.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/03/2012] [Accepted: 09/18/2012] [Indexed: 12/26/2022]
Abstract
High mobility group (HMG) box proteins are abundant and ubiquitous DNA binding proteins with a remarkable array of functions throughout the cell. The structure of the HMG box DNA binding domain and general mechanisms of DNA binding and bending have been known for more than a decade. However, new mechanisms that regulate HMG box protein intracellular translocation, and by which HMG box proteins recognize DNA with and without sequence specificity, have only recently been uncovered. This review focuses primarily on the Sry-like HMG box family, HMGB1, and mitochondrial transcription factor A. For these proteins, structural and biochemical studies have shown that HMG box protein modularity, interactions with other DNA binding proteins and cellular receptors, and post-translational modifications are key regulators of their diverse functions.
Collapse
Affiliation(s)
- Christopher S Malarkey
- Department of Pharmacology, University of Colorado Denver, School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045-0511, USA
| | | |
Collapse
|
6
|
Arif A. Extraneuronal activities and regulatory mechanisms of the atypical cyclin-dependent kinase Cdk5. Biochem Pharmacol 2012; 84:985-93. [PMID: 22795893 DOI: 10.1016/j.bcp.2012.06.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 12/13/2022]
Abstract
Cyclin-dependent kinase, Cdk5, is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases with no evident role in cell cycle progression. Cdk5 is present in post-mitotic and terminally differentiated neuronal/glial cells and is also known to arrest cell cycle. Also atypical is the activation of Cdk5 by binding of a non-cyclin activator protein, namely, the Cdk5 regulatory proteins Cdk5R1 (p35), truncated Cdk5R1 (p25), or Cdk5R2 (p39). Despite its ubiquitous presence in all cells and tissues, Cdk5 is often referred to as a neuron-specific kinase largely due to the abundant presence of the activator proteins in neuronal cells. Recently, this concept of a canonical neuronal function of Cdk5 has been extended, if not challenged, by the observation of p35 and p39 expression, as well as Cdk5 activity, in multiple non-neuronal cells. Extraneuronal Cdk5 regulates critical biological processes including transcript-selective translation control for regulation of macrophage gene expression, glucose-inducible insulin secretion, hematopoietic cell differentiation, vascular angiogenesis, cell migration, senescence, and wound-healing, among others. Recent advances in the extraneuronal functions of Cdk5 are reviewed and discussed here in the context of their physiological activities and pathophysiological implications with some speculative comments on the endogenous control mechanisms that might "turn on" Cdk5 activity. The potential importance of targeted inhibition of Cdk5 as therapeutic agents against glucotoxicity, diabetes, cardiovascular diseases, and cancer is also discussed.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
7
|
The effect of PKC phosphorylation on the "architectural" properties of HMGB1 protein. Mol Biol Rep 2012; 39:9947-53. [PMID: 22740141 DOI: 10.1007/s11033-012-1863-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
High mobility group box (HMGB)1 protein acts as an architectural element, promoting the assembly of active nucleoprotein complexes due to its ability to bend DNA and to bind preferentially to distorted DNA structures. The behavior of HMGB1 as an "architect" of chromatin defines it as an important factor in many cellular processes such as repair, replication and remodeling. It was shown that the post-synthetic acetylation of HMGB1 at Lys2 modulated its essential properties as a structure-specific nuclear protein. We studied the role of PKC phosphorylation on the "architectural" properties of HMGB1, (i) the effect for the formation of a stable complex with DNA damaged by the anti-tumour drug cis-platinum and (ii) the influence on the ability of HMGB1 protein to bend short DNA fragments. PKC-phosphorylated recombinant HMGB1 increased about an order of magnitude its affinity to cis-platinated DNA, a finding that has already been reported for in vivo acetylated protein. Regarding the effect on the protein's DNA bending ability, it was enhanced upon phosphorylation as demonstrated by the stimulation of DNA circularization. We showed also that PKC phosphorylated the recombinant protein in vitro simultaneously at two target sites. Our results demonstrate that the PKC phosphorylation of HMGB1 has a considerable effect on the fundamental properties of the protein; therefore this post-synthetic modification may serve as a modulator of the HMGB1 participation in different nuclear processes.
Collapse
|
8
|
Contreras-Vallejos E, Utreras E, Gonzalez-Billault C. Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cell Signal 2011; 24:44-52. [PMID: 21924349 DOI: 10.1016/j.cellsig.2011.08.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/29/2011] [Indexed: 12/23/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that is mostly active in the nervous system, where it regulates several processes such as neuronal migration, actin and microtubule dynamics, axonal guidance, and synaptic plasticity, among other processes. In addition to these known functions, in the past few years, novel roles for Cdk5 outside of the nervous system have been proposed. These include roles in gene transcription, vesicular transport, apoptosis, cell adhesion, and migration in many cell types and tissues such as pancreatic cells, muscle cells, neutrophils, and others. In this review, we will summarize the recently studied non-neuronal functions of Cdk5, with a thorough analysis of the biological consequences of these novel roles.
Collapse
Affiliation(s)
- Erick Contreras-Vallejos
- Department of Biology and Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|