1
|
In crystallo thermodynamic analysis of conformational change of the topaquinone cofactor in bacterial copper amine oxidase. Proc Natl Acad Sci U S A 2018; 116:135-140. [PMID: 30563857 DOI: 10.1073/pnas.1811837116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the catalytic reaction of copper amine oxidase, the protein-derived redox cofactor topaquinone (TPQ) is reduced by an amine substrate to an aminoresorcinol form (TPQamr), which is in equilibrium with a semiquinone radical (TPQsq). The transition from TPQamr to TPQsq is an endothermic process, accompanied by a significant conformational change of the cofactor. We employed the humid air and glue-coating (HAG) method to capture the equilibrium mixture of TPQamr and TPQsq in noncryocooled crystals of the enzyme from Arthrobacter globiformis and found that the equilibrium shifts more toward TPQsq in crystals than in solution. Thermodynamic analyses of the temperature-dependent equilibrium also revealed that the transition to TPQsq is entropy-driven both in crystals and in solution, giving the thermodynamic parameters that led to experimental determination of the crystal packing effect. Furthermore, we demonstrate that the binding of product aldehyde to the hydrophobic pocket in the active site produces various equilibrium states among two forms of the product Schiff-base, TPQamr, and TPQsq, in a pH-dependent manner. The temperature-controlled HAG method provides a technique for thermodynamic analysis of conformational changes occurring in protein crystals that are hardly scrutinized by conventional cryogenic X-ray crystallography.
Collapse
|
2
|
Burke AA, Severson ES, Mool S, Solares Bucaro MJ, Greenaway FT, Jakobsche CE. Comparing hydrazine-derived reactive groups as inhibitors of quinone-dependent amine oxidases. J Enzyme Inhib Med Chem 2017; 32:496-503. [PMID: 28110559 PMCID: PMC6009937 DOI: 10.1080/14756366.2016.1265518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lysyl oxidase has emerged as an important enzyme in cancer metastasis. Its activity has been reported to become upregulated in several types of cancer, and blocking its activity has been shown to limit the metastatic potential of various cancers. The small-molecules phenylhydrazine and β-aminopropionitrile are known to inhibit lysyl oxidase; however, issues of stability, toxicity, and poorly defined mechanisms limit their potential use in medical applications. The experiments presented herein evaluate three other families of hydrazine-derived compounds – hydrazides, alkyl hydrazines, and semicarbazides – as irreversible inhibitors of lysyl oxidase including determining the kinetic parameters and comparing the inhibition selectivities for lysyl oxidase against the topaquinone-containing diamine oxidase from lentil seedlings. The results suggest that the hydrazide group may be a useful core functionality that can be developed into potent and selective inhibitors of lysyl oxidase and eventually find application in cancer metastasis research.
Collapse
Affiliation(s)
- Ashley A Burke
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | - Elizabeth S Severson
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | - Shreya Mool
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | | | - Frederick T Greenaway
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| | - Charles E Jakobsche
- a Carlson School of Chemistry and Biochemistry, Clark University , Worcester , MA , USA
| |
Collapse
|
3
|
Murakawa T, Hamaguchi A, Nakanishi S, Kataoka M, Nakai T, Kawano Y, Yamaguchi H, Hayashi H, Tanizawa K, Okajima T. Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions. J Biol Chem 2015; 290:23094-109. [PMID: 26269595 DOI: 10.1074/jbc.m115.662726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 11/06/2022] Open
Abstract
The catalytic reaction of copper amine oxidase proceeds through a ping-pong mechanism comprising two half-reactions. In the initial half-reaction, the substrate amine reduces the Tyr-derived cofactor, topa quinone (TPQ), to an aminoresorcinol form (TPQamr) that is in equilibrium with a semiquinone radical (TPQsq) via an intramolecular electron transfer to the active-site copper. We have analyzed this reductive half-reaction in crystals of the copper amine oxidase from Arthrobacter globiformis. Anerobic soaking of the crystals with an amine substrate shifted the equilibrium toward TPQsq in an "on-copper" conformation, in which the 4-OH group ligated axially to the copper center, which was probably reduced to Cu(I). When the crystals were soaked with substrate in the presence of halide ions, which act as uncompetitive and noncompetitive inhibitors with respect to the amine substrate and dioxygen, respectively, the equilibrium in the crystals shifted toward the "off-copper" conformation of TPQamr. The halide ion was bound to the axial position of the copper center, thereby preventing TPQamr from adopting the on-copper conformation. Furthermore, transient kinetic analyses in the presence of viscogen (glycerol) revealed that only the rate constant in the step of TPQamr/TPQsq interconversion is markedly affected by the viscogen, which probably perturbs the conformational change. These findings unequivocally demonstrate that TPQ undergoes large conformational changes during the reductive half-reaction.
Collapse
Affiliation(s)
- Takeshi Murakawa
- From the Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Akio Hamaguchi
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Shota Nakanishi
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Misumi Kataoka
- the School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan, the Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan
| | - Tadashi Nakai
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yoshiaki Kawano
- the Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroshi Yamaguchi
- the School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan, the Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideyuki Hayashi
- the Department of Chemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan, and
| | - Katsuyuki Tanizawa
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan, the Center of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Toshihide Okajima
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan, the Department of Chemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan, and
| |
Collapse
|
4
|
Lucchesini F, Pocci M, Alfei S, Bertini V, Buffoni F. Synthesis of 2,6-disubstituted benzylamine derivatives as reversible selective inhibitors of copper amine oxidases. Bioorg Med Chem 2014; 22:1558-67. [DOI: 10.1016/j.bmc.2014.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/29/2013] [Accepted: 01/21/2014] [Indexed: 11/16/2022]
|
5
|
Murakawa T, Hayashi H, Sunami T, Kurihara K, Tamada T, Kuroki R, Suzuki M, Tanizawa K, Okajima T. High-resolution crystal structure of copper amine oxidase fromArthrobacter globiformis: assignment of bound diatomic molecules as O2. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2483-94. [DOI: 10.1107/s0907444913023196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/18/2013] [Indexed: 11/10/2022]
Abstract
The crystal structure of a copper amine oxidase fromArthrobacter globiformiswas determined at 1.08 Å resolution with the use of low-molecular-weight polyethylene glycol (LMW PEG; average molecular weight ∼200) as a cryoprotectant. The final crystallographicRfactor andRfreewere 13.0 and 15.0%, respectively. Several molecules of LMW PEG were found to occupy cavities in the protein interior, including the active site, which resulted in a marked reduction in the overallBfactor and consequently led to a subatomic resolution structure for a relatively large protein with a monomer molecular weight of ∼70 000. About 40% of the presumed H atoms were observed as clear electron densities in theFo−Fcdifference map. Multiple minor conformers were also identified for many residues. Anisotropic displacement fluctuations were evaluated in the active site, which contains a post-translationally derived quinone cofactor and a Cu atom. Furthermore, diatomic molecules, most likely to be molecular oxygen, are bound to the protein, one of which is located in a region that had previously been proposed as an entry route for the dioxygen substrate from the central cavity of the dimer interface to the active site.
Collapse
|
6
|
Klema VJ, Solheid CJ, Klinman JP, Wilmot CM. Structural analysis of aliphatic versus aromatic substrate specificity in a copper amine oxidase from Hansenula polymorpha. Biochemistry 2013; 52:2291-301. [PMID: 23452079 DOI: 10.1021/bi3016845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper amine oxidases (CAOs) are responsible for the oxidative deamination of primary amines to their corresponding aldehydes. The CAO catalytic mechanism can be divided into two half-reactions: a reductive half-reaction in which a primary amine substrate is oxidized to its corresponding aldehyde with the concomitant reduction of the organic cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ) and an oxidative half-reaction in which reduced TPQ is reoxidized with the reduction of molecular oxygen to hydrogen peroxide. The reductive half-reaction proceeds via Schiff base chemistry, in which the primary amine substrate first attacks the C5 carbonyl of TPQ, forming a series of covalent Schiff base intermediates. The X-ray crystal structures of copper amine oxidase-1 from the yeast Hansenula polymorpha (HPAO-1) in complex with ethylamine and benzylamine have been determined to resolutions of 2.18 and 2.25 Å, respectively. These structures reveal the two amine substrates bound at the back of the active site coincident with TPQ in its two-electron-reduced aminoquinol form. Rearrangements of particular amino acid side chains within the substrate channel and specific protein-substrate interactions provide insight into the substrate specificity of HPAO-1. These changes begin to account for this CAO's kinetic preference for small, aliphatic amines over the aromatic amines or whole peptides preferred by some of its homologues.
Collapse
Affiliation(s)
- Valerie J Klema
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
7
|
The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int J Mol Sci 2012; 13:5375-5405. [PMID: 22754303 PMCID: PMC3382800 DOI: 10.3390/ijms13055375] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/22/2012] [Accepted: 04/26/2012] [Indexed: 12/22/2022] Open
Abstract
Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.
Collapse
|