1
|
Dobrochaeva K, Khasbiullina N, Shilova N, Antipova N, Obukhova P, Ovchinnikova T, Galanina O, Blixt O, Kunz H, Filatov A, Knirel Y, LePendu J, Khaidukov S, Bovin N. Specificity of human natural antibodies referred to as anti-Tn. Mol Immunol 2020; 120:74-82. [PMID: 32087569 DOI: 10.1016/j.molimm.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
To understand the role of human natural IgM known as antibodies against the carbohydrate epitope Tn, the antibodies were isolated using GalNAcα-Sepharose affinity chromatography, and their specificity was profiled using microarrays (a glycan array printed with oligosaccharides and bacterial polysaccharides, as well as a glycopeptide array), flow cytometry, and inhibition ELISA. The antibodies bound a restricted number of GalNAcα-terminated oligosaccharides better than the parent monosaccharide, e.g., 6-O-Su-GalNAcα and GalNAcα1-3Galβ1-3(4)GlcNAcβ. The binding with several bacterial polysaccharides that have no structural resemblance to the affinity ligand GalNAcα was quite unexpected. Given that GalNAcα is considered the key fragment of the Tn antigen, it is surprising that these antibodies bind weakly GalNAcα-OSer and do not bind a wide variety of GalNAcα-OSer/Thr-containing mucin glycopeptides. At the same time, we have observed specific binding to cells having Tn-positive glycoproteins containing similar glycopeptide motifs in a conformationally rigid macromolecule. Thus, specific recognition of the Tn antigen apparently requires that the naturally occurring "anti-Tn" IgM recognize a complex epitope comprising the GalNAcα as an essential component and a fairly long amino acid sequence where the amino acids adjacent to GalNAcα do not contact the antibody paratope; i.e., the antibodies recognize a spatial epitope or a molecular pattern rather than a classical continuous sequence. In addition, we have not found any increase in the binding of natural antibodies when GalNAcα residues were clustered. These results may help in further development of anticancer vaccines based on synthetic Tn constructs.
Collapse
Affiliation(s)
- Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Nailya Khasbiullina
- Semiotik LLC, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; Semiotik LLC, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation
| | - Nadezhda Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, Moscow 117198, Russian Federation; National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation
| | - Tatiana Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Oxana Galanina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Horst Kunz
- Institut Für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Alexander Filatov
- Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, 115478, Russian Federation
| | - Yuriy Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Jacques LePendu
- University of Nantes, Inserm, U892 IRT UN, 8 Quai MonCousu, BP70721 Nantes, FR 44007, France
| | - Sergey Khaidukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation.
| |
Collapse
|
2
|
Shuck SC, Hong T, Kalkum M, Igarashi R, Kajiya K, Termini J, Yamamoto K, Fujita-Yamaguchi Y. MLS128 antibody-induced suppression of colon cancer cell growth is mediated by a desmocollin and a 110 kDa glycoprotein. Biosci Trends 2019; 13:216-224. [PMID: 31168022 DOI: 10.5582/bst.2019.01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein glycosylation is a diverse form of post-translational modification. Two to three consecutive O-linked N-acetylgalactosamines (Tn-antigens) are recognized by antibodies such as MLS128. MLS128 mAb inhibited cell growth and bound to a 110 kDa glycoprotein (GP) in LS180 and HT29 colon cancer cells. However, purification and identification of the 110 kDa GP was unsuccessful due to its low abundance. The present study used a highly sophisticated and sensitive mass spectrometry method to identify proteins immunoprecipitated with MLS128 and separated by two-dimensional gel electrophoresis. Three desmosome components were identified. Of these, desmocollin and desmoglein shared many similar characteristics, including molecular mass, pI, and potential Tn-antigen sites. Western blotting analyses of LS180 cell lysates revealed a common 110 kDa band recognized by MLS128 and anti-desmocollin, but not by anti-desmoglein. Immunofluorescence microscopy of LS180 cells revealed that desmocollin is membrane-bound, while desmoglein is primarily localized in the cytosol. Confocal microscopy demonstrated colocalization of the desmocollin-specific antibody with the MLS128 antibody on the cell membrane, suggesting that desmocollin may contain Tn-antigens recognized by MLS128. Treatment of LS180 cells with siRNA to knock down desmocollin expression or a desmocollin-specific antibody decreased cell viability, suggesting a critical role for this protein in cell growth and survival. N-glycosidase F digestion of the 110 kDa GP and desmocollin suggested that although both proteins contain N-glycosylation sites, they are not identical. These findings suggest that desmocollin colocalizes with the 110 kDa GP and that growth inhibition induced by the MLS128 antibody may be mediated through a mechanism that involves desmocollin.
Collapse
Affiliation(s)
- Sarah C Shuck
- Department of Molecular Medicine, Beckman Research Institute
| | - Teresa Hong
- Department of Molecular Imaging and Therapy, Beckman Research Institute
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute
| | - Ryo Igarashi
- Department of Molecular Medicine, Beckman Research Institute
| | - Kota Kajiya
- Department of Molecular Medicine, Beckman Research Institute
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | | |
Collapse
|
3
|
Poiroux G, Barre A, Rougé P, Benoist H. Targeting Glycosylation Aberrations to Improve the Efficiency of Cancer Phototherapy. Curr Cancer Drug Targets 2019; 19:349-359. [DOI: 10.2174/1568009618666180628101059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
The use of photodynamic therapy in cancer still remains limited, partly because of the lack of photosensitizer (PS) specificity for the cancerous tissues. Various molecular tools are available to increase PS efficiency by targeting the cancer cell molecular alterations. Most strategies use the protein-protein interactions, e.g. monoclonal antibodies directed toward tumor antigens, such as HER2 or EGFR. An alternative could be the targeting of the tumor glycosylation aberrations, e.g. T/Tn antigens that are truncated O-glycans over-expressed in numerous tumors. Thus, to achieve an effective targeting, PS can be conjugated to molecules that specifically recognize the Oglycosylation aberrations at the cancer cell surface.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Universite de Toulouse, CRCT, INSERM UMR 1037, 2 Avenue Hubert Curien, 31037 Toulouse, France
| | - Annick Barre
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Pierre Rougé
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Hervé Benoist
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| |
Collapse
|
4
|
Wang X, McKay P, Yee LT, Dutina G, Hass PE, Nijem I, Allison D, Cowan KJ, Lin K, Quarmby V, Yang J. Impact of SPR biosensor assay configuration on antibody: Neonatal Fc receptor binding data. MAbs 2016; 9:319-332. [PMID: 28001487 DOI: 10.1080/19420862.2016.1261774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Binding interactions with the neonatal Fc receptor (FcRn) are one determinant of pharmacokinetic properties of recombinant human monoclonal antibody (rhumAb) therapeutics, and a conserved binding motif in the crystallizable fragment (Fc) region of IgG molecules interacts with FcRn. Surface plasmon resonance (SPR) biosensor assays are often used to characterize interactions between FcRn and rhumAb therapeutics. In such assays, generally either the rhumAb (format 1) or the FcRn protein (format 2) is immobilized on a biosensor chip. However, because evidence suggests that, in some cases, the variable domains of a rhumAb may also affect FcRn binding, we evaluated the effect of SPR assay configuration on binding data. We sought to assess FcRn binding properties of 2 rhumAbs (rhumAb1 and rhumAb2) to FcRn proteins using these 2 biosensor assay formats. The two rhumAbs have greater than 99% sequence identity in the Fc domain but differ in their Fab regions. rhumAb2 contains a positively charged patch in the variable domain that is absent in rhumAb1. Our results showed that binding of rhumAb1 to FcRn was independent of biosensor assay configuration, while binding of rhumAb2 to FcRn was highly SPR assay configuration dependent. Further investigations revealed that the format dependency of rhumAb2-FcRn binding is linked to the basic residues that form a positively charged patch in the variable domain of rhumAb2. Our work highlights the importance of analyzing rhumAb-FcRn binding interactions using 2 alternate SPR biosensor assay configurations. This approach may also provide a simple way to identify the potential for non-Fc-driven FcRn binding interactions in otherwise typical IgGs.
Collapse
Affiliation(s)
- Xiangdan Wang
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - Patrick McKay
- b Technical Development, Genentech , South San Francisco , CA , USA
| | - Liliana T Yee
- b Technical Development, Genentech , South San Francisco , CA , USA
| | - George Dutina
- c Department of Early Stage Cell Culture , Genentech , South San Francisco , CA , USA
| | - Philip E Hass
- d Protein Chemistry, Genentech , South San Francisco , CA , USA
| | - Ihsan Nijem
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - David Allison
- e Clinical Pharmacology, Genentech , South San Francisco , CA , USA
| | - Kyra J Cowan
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - Kevin Lin
- f Analytical Operations, Genentech , South San Francisco , CA , USA
| | - Valerie Quarmby
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| | - Jihong Yang
- a BioAnalytical Sciences, Genentech , South San Francisco , CA , USA
| |
Collapse
|
5
|
Qu J, Yu H, Li F, Zhang C, Trad A, Brooks C, Zhang B, Gong T, Guo Z, Li Y, Ragupathi G, Lou Y, Hwu P, Huang W, Zhou D. Molecular basis of antibody binding to mucin glycopeptides in lung cancer. Int J Oncol 2015; 48:587-94. [PMID: 26692014 PMCID: PMC4725460 DOI: 10.3892/ijo.2015.3302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/12/2015] [Indexed: 02/04/2023] Open
Abstract
Glycopeptides bearing Tn epitopes are emerging targets for cancer diagnosis and immunotherapy. In this study, we analyzed membrane proteins containing O-glycosylated tandem repeat (TR) sequences in lung cancer patients of different types and stages, using gene microarray data in public domain. The expression of Tn and glycopeptide epitopes on the surface of lung cancer cell lines were studied by monoclonal IgG antibodies 14A, 16A, and B72.3. The binding of mAbs to synthetic glycopeptides were studied by surface plasmon resonance. Nine mucin mRNAs were found to be expressed in lung cancer patients but at similar level to healthy individuals. At protein level, a glycopeptide epitope on cancer cell surface is preferably recognized by mAb 16A, as compared to peptide-alone (14A) or sugar-alone epitopes (B72.3). 14A and 16A favor clustered TR containing more than three TR sequences, with 10-fold lower Kd than two consecutive TR. B72.3 preferrably recognized clustered sialyl-Tn displayed on MUC1 but not other O-glycoproteins, with 100-fold stronger binding when MUC1 is transfected as a sugar carrier, while the total sugar epitopes remain unchanged. These findings indicate that clusters of both TR backbones and sugars are essential for mAb binding to mucin glycopeptides. Three rules of antibody binding to mucin glycopeptides at molecular level are presented here: first, the peptide backbone of a glycopeptide is preferentially recognized by B cells through mutations in complementarity determining regions (CDRs) of B cell receptor, and the sugar-binding specificity is acquired through mutations in frame work of heavy chain; secondly, consecutive tandem repeats (TR) of peptides and glycopeptides are preferentially recognized by B cells, which favor clustered TR containing more than three TR sequences; thirdly, certain sugar-specific B cells recognize and accommodate clustered Tn and sialyl-Tn displayed on the surface of a mucin but not other membrane proteins.
Collapse
Affiliation(s)
- Jin Qu
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongtao Yu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and iHuman Institute, Shanghai Tech University, Shanghai 201203, P.R. China
| | - Fenge Li
- Tianjin Cancer Hospital, Tianjin 300060, P.R. China
| | - Chunlei Zhang
- Shenzhen Hospital of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Ahmad Trad
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Cory Brooks
- Department of Chemistry, California State University, Fresno, CA 93740, USA
| | - Bin Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ting Gong
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Zhi Guo
- Tianjin Cancer Hospital, Tianjin 300060, P.R. China
| | - Yunsen Li
- Laboratory of Cellular and Molecular Tumor Immunology, Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | | | - Yanyan Lou
- Mayo Clinic, Jacksonville, FL 32224, USA
| | - Patrick Hwu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and iHuman Institute, Shanghai Tech University, Shanghai 201203, P.R. China
| | - Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
6
|
Oura F, Yajima Y, Nakata M, Taniue K, Akiyama T, Nakada *H, Yamamoto K, Fujita-Yamaguchi Y. Susceptibility to proteases of anti-Tn-antigen MLS128 binding glycoproteins expressed in human colon cancer cells. Biosci Trends 2015; 9:49-55. [PMID: 25787909 DOI: 10.5582/bst.2014.01127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fumie Oura
- Department of Applied Biochemistry, Tokai University School of Engineering
| | - Yukiko Yajima
- Department of Applied Biochemistry, Tokai University School of Engineering
| | - Munehiro Nakata
- Department of Applied Biochemistry, Tokai University School of Engineering
| | - Kenzui Taniue
- Department of Applied Biochemistry, Tokai University School of Engineering
| | | | - *Hiroshi Nakada
- Department of Applied Biochemistry, Tokai University School of Engineering
| | - Kazuo Yamamoto
- Department of Applied Biochemistry, Tokai University School of Engineering
| | | |
Collapse
|
7
|
Production of Single-Chain Variable-Fragments against Carbohydrate Antigens. Antibodies (Basel) 2014. [DOI: 10.3390/antib3010155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Fujita-Yamaguchi Y. Renewed interest in basic and applied research involving monoclonal antibodies against an oncofetal Tn-antigen. J Biochem 2013; 154:103-5. [PMID: 23740330 DOI: 10.1093/jb/mvt052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tn-antigen (GalNAcα-Ser/Thr) is one of the most common aberrations associated with cancer progression and metastasis, and thus is an excellent target for development of cancer diagnostics and therapeutics. MLS128 monoclonal antibody (mAb), derived from a mouse immunized with human colon carcinoma cells, was reported to bind to two or three consecutive Tn-antigens (Tn2 or Tn3) with one-order higher affinity for Tn3 than for Tn2. Our recent studies demonstrated that MLS128 significantly inhibits breast and colon cancer cell growth. Molecular cloning of the variable regions of heavy (VH) and light (VL) chains revealed that the VH sequence of MLS128 shared 97% nucleotide sequence identity with the VH of 83D4 mAb, derived from breast cancer-immunized mice, which has a similar affinity for Tn2/Tn3. MLS128 single-chain antibodies (scFv) and scFv-Fc were constructed to confirm the affinity for synthetic Tn2/Tn3 peptides. Thermodynamic studies on MLS128 binding to Tn2/Tn3 revealed its unique nature of temperature-dependent binding.
Collapse
Affiliation(s)
- Yoko Fujita-Yamaguchi
- Department of Applied Biochemistry, Tokai University School of Engineering, Hiratsuka, Kanagawa, Japan.
| |
Collapse
|
9
|
Day ES, Capili AD, Borysenko CW, Zafari M, Whitty A. Determining the affinity and stoichiometry of interactions between unmodified proteins in solution using Biacore. Anal Biochem 2013; 440:96-107. [PMID: 23711722 DOI: 10.1016/j.ab.2013.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/03/2013] [Accepted: 05/10/2013] [Indexed: 11/30/2022]
Abstract
We describe a general Biacore method for measuring equilibrium binding affinities and stoichiometries for interactions between unmodified proteins and their unmodified ligands free in solution. Mixtures of protein and ligand are preequilibrated at different ratios in solution and then analyzed by Biacore using a sensor chip surface that detects only unbound analyte. Performing the Biacore analysis under mass transport limited conditions allows the concentration of unbound analyte to be determined from the initial velocity of binding. Plots of initial velocity versus the concentration of the varied binding partner are fitted to a quadratic binding equation to give the affinity and stoichiometry of binding. We demonstrate the method using soluble Her2 extracellular domain binding to monovalent, bivalent, and trivalent forms of an anti-Her2 antibody. The affinity we measured agrees with that obtained from conventional Biacore kinetic analysis, and the stoichiometries for the resulting 1:1, 1:2, and 1:3 complexes were confirmed by gel filtration with in-line light scattering. The method is applicable over an affinity range of approximately 100 pM to 1 μM and is particularly useful when there is concern that covalently modifying one or the other binding partner might affect its binding properties or where multivalency might otherwise complicate a quantitative analysis of binding.
Collapse
|
10
|
Yuasa N, Ogawa H, Koizumi T, Tsukamoto K, Matsumoto-Takasaki A, Asanuma H, Nakada H, Fujita-Yamaguchi Y. Construction and expression of anti-Tn-antigen-specific single-chain antibody genes from hybridoma producing MLS128 monoclonal antibody. J Biochem 2012; 151:371-81. [DOI: 10.1093/jb/mvs007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
11
|
Subedi GP, Satoh T, Hanashima S, Ikeda A, Nakada H, Sato R, Mizuno M, Yuasa N, Fujita-Yamaguchi Y, Yamaguchi Y. Overproduction of anti-Tn antibody MLS128 single-chain Fv fragment in Escherichia coli cytoplasm using a novel pCold-PDI vector. Protein Expr Purif 2012; 82:197-204. [PMID: 22245752 DOI: 10.1016/j.pep.2011.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/24/2022]
Abstract
Overproduction of recombinant proteins in Escherichia coli is often hampered by their failure to fold correctly, leading to their accumulation within inclusion bodies. To overcome the problem, a variety of techniques aimed at soluble expression have been developed including low temperature expression and/or fusion of soluble tags and chaperones. However, a general protocol for bacterial expression of disulfide bond-containing proteins has hitherto not been established. Single chain Fv fragments (scFvs) are disulfide bond-containing proteins often difficult to express in soluble forms in E. coli. We here examine in detail the E. coli expression of a scFv originating from an anti-carbohydrate MLS128 antibody as a model system. We combine three techniques: (1) tagging scFv with thioredoxin, DsbC and protein disulfide isomerase (PDI), (2) expressing the proteins at low temperature using the pCold vector system, and (3) using Origami E. coli strains with mutations in the thioredoxin reductase and glutathione reductase genes. We observed a high expression level of soluble MLS128-scFv in the Origami strain only when PDI is used as a tag. The recombinant protein retains full binding activity towards synthetic carbohydrate antigens. The developed "pCold-PDI" vector has potential for overproduction of other scFvs and disulfide-containing proteins in the Origami strains.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Structural Glycobiology Team, Systems Glycobiology Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|