1
|
Norris PAA, Kubes P. Innate immunity of the lungs in homeostasis and disease. Mucosal Immunol 2025:S1933-0219(25)00039-X. [PMID: 40220792 DOI: 10.1016/j.mucimm.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Humans breathe thousands of litres of non-sterile air each day containing bacteria, viruses, and fungi, as well as pollutants, allergens, and other particles. The continual exposure to foreign particles is juxtaposed with the vast surface area of the blood-air-barrier which becomes extremely thin to allow for efficient gas exchange. To prevent infection and injury, the healthy lung relies on a robust innate immune system to protect itself. Critically, this innate immune system must clear insults while maintaining immune tolerance and minimizing inflammation to avoid disrupting the lung's vital gas exchange function. In this review, we discuss how the innate immune system protects the lung from its environment.
Collapse
Affiliation(s)
- Peter A A Norris
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paul Kubes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Guo C, Rizkalla AS, Hamilton DW. FGF and TGF-β growth factor isoform modulation of human gingival and periodontal ligament fibroblast wound healing phenotype. Matrix Biol 2025; 136:9-21. [PMID: 39756500 DOI: 10.1016/j.matbio.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/18/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Release of growth factors in the tissue microenvironment is a critical process in the repair and regeneration of periodontal tissues, regulating fibroblast behavior and phenotype. As a result of the complex architecture of the periodontium, distinct fibroblast populations in the periodontal ligament and gingival connective tissue exist in close proximity. Growth factor therapies for periodontal regeneration have gained traction, but quantification of their effects on multiple different fibroblast populations that are required for repair has been poorly investigated. In this study, we examined the effects of TGF-β1, TGF-β3, FGF-2, and FGF-9 on human gingival fibroblasts (hGF) and human periodontal ligament cells (hPDL), as well as the combined effects of TGF-β3 and FGF-2. We show that FGF-2 enhances cell migration while TGF-β1 and TGF-β3 promotes matrix production, and TGF-β1 promotes fibroblast to myofibroblast transition. Interestingly, the combination of TGF-β3 and FGF-2, acting through both p-SMAD3 and p-ERK pathways, mitigates the inhibitory effects of TGF-β3 on migration in hPDL cells, suggesting synergistic and complimentary effects of FGF-2 and TGF-β3. Additionally, fibronectin production in hGF increased when treated with the combined TGF-β3+FGF-2 compared to FGF-2 alone, indicating that the effects of TGF-β3 in promoting extracellular matrix production are still active in the combined treatment condition. Finally, our study highlights that FGF-9 did not influence migration, α-SMA expression, or extracellular matrix production in either cell type, emphasizing the unique roles of specific growth factors in cellular responses. The synergistic effects observed with combined TGF-β3 and FGF-2 treatments present promising avenues for further research and clinical advancements in regenerative medicine.
Collapse
Affiliation(s)
- Chengyu Guo
- Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada
| | - Amin S Rizkalla
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Department of Chemical and Biochemical, Thompson Engineering Building, Western University, London, Ontario, N6A 5B9, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
3
|
Auton E, Kamal M, Jubouri M, Bashir M. The Complicated Genetics behind Uncomplicated Type B Aortic Dissection. Ann Vasc Surg 2025; 115:236-247. [PMID: 40058456 DOI: 10.1016/j.avsg.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Up to 50% of uncomplicated type B aortic dissection (unTBAD) cases progress to become complicated with a mortality rate of up to 42% within 5 years of onset. Morphological and clinical parameters have previously been defined for the decision of surgical intervention in unTBAD to improve clinical outcomes. The analysis of genetic variants in this risk stratification has demonstrated a lack of evidence to influence clinical decision-making. METHODS A comprehensive literature review was conducted using multiple electronic databases. A selection of genes recognized in thoracic aortic aneurysms and dissections were investigated in association with clinical outcomes in type B aortic dissections. RESULTS Case studies highlighted the impact of variants in fibrillin-1, type III collagen, alpha-actin 2, MYH11, protein kinase cGMP-dependent type I, transforming growth factor beta 1, type I transforming growth factor β receptor, and type II transforming growth factor β receptor on clinical outcomes in type B aortic dissection. Patients who carry variants in these genes experience more rapid disease progression and benefit from surgery. CONCLUSION The presence of a variant in genes that underlie unTBAD etiology could impact clinical decision-making and risk stratification in unTBAD. Emerging evidence supports thoracic endovascular aortic repair for unTBAD patients who have a higher risk of developing complications. The use of genetics in the management of unTBAD patients may help to improve the adverse clinical outcomes in unTBAD.
Collapse
Affiliation(s)
- Ella Auton
- Faculty of Medicine, Imperial College London, London, UK.
| | | | - Matti Jubouri
- Hull York Medical School, University of York, York, UK
| | - Mohamad Bashir
- Vascular & Endovascular Surgery, Velindre, University NHS Trust, Cardiff, Wales, UK
| |
Collapse
|
4
|
Hopkins CM, Wilks BT, Morgan JR. TGF-β1 requires IL-13 to sustain collagen accumulation and increasing tissue strength and stiffness. Connect Tissue Res 2025; 66:107-120. [PMID: 40013741 DOI: 10.1080/03008207.2025.2469575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/27/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
AIMS Fibrosis is a multifactorial process characterized by the excessive accumulation of extracellular matrix (ECM), increased tissue stiffness, and decreased elasticity. This study examined how individual cytokines and a cytokine combination alter collagen production and biomechanics in a 3D in vitro model of the human ECM. METHODS Cultured human fibroblasts were seeded into a circular agarose trough molded in 24 well plates. The fibroblasts aggregated and formed a 3D ring-shaped tissue that synthesized de novo a collagen-rich human ECM complete with collagen fibrils. Unlike existing models, no macromolecular crowders were added, nor artificial scaffolds or exogenous ECM proteins. Rings were treated with TGF-β1, IL-13 or the combination of TGF-β1 and IL-13 for up to 3 weeks. Morphology, histology, collagen, DNA, fibril formation, gene expression and tensile properties of the rings were measured. RESULTS As the rings compacted, cellularity and total DNA decreased, whereas total collagen accumulated. TGF-β1 stimulated collagen accumulation and increased ring biomechanics at day 7, but these increases stalled and declined by day 21. When treated with IL-13, a cytokine exclusive to the immune system, there were no significant differences from control. However, when TGF-β1 was combined with IL-13, collagen levels and ring biomechanics increased over the entire three weeks to levels higher than TGF-β1 alone. Gene expression was differentially regulated by cytokine treatment over the entire three weeks suggesting that increased collagen accumulation was not due to upregulation of collagen gene expression. CONCLUSIONS These results suggest that TGF-β1 requires a second signal, such as IL-13, to sustain the long-term pathological increases in collagen accumulation and biomechanics that can compromise the function of fibrotic tissues.
Collapse
Affiliation(s)
- Caitlin M Hopkins
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Benjamin T Wilks
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Hashemi Karoii D, Azizi H, Darvari M, Qorbanee A, Hawezy DJ. Identification of novel cytoskeleton protein involved in spermatogenic cells and sertoli cells of non-obstructive azoospermia based on microarray and bioinformatics analysis. BMC Med Genomics 2025; 18:19. [PMID: 39863862 PMCID: PMC11762539 DOI: 10.1186/s12920-025-02087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis. METHODS The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes). To validate these findings, we cross-referenced our results with data from a single-cell genomics database. RESULTS In the microarray analyses of three human cases with different NOA spermatogenic cells, the expression of TBL3, MAGEA8, KRTAP3-2, KRT35, VCAN, MYO19, FBLN2, SH3RF1, ACTR3B, STRC, THBS4, and CTNND2 were upregulated, while expression of NTN1, ITGA1, GJB1, CAPZA1, SEPTIN8, and GOLGA6L6 were downregulated. There was an increase in KIRREL3, TTLL9, GJA1, ASB1, and RGPD5 expression in the Sertoli cells of three human cases with NOA, whereas expression of DES, EPB41L2, KCTD13, KLHL8, TRIOBP, ECM2, DVL3, ARMC10, KIF23, SNX4, KLHL12, PACSIN2, ANLN, WDR90, STMN1, CYTSA, and LTBP3 were downregulated. A combined analysis of Gene Ontology (GO) and STRING, were used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP) mitotic cytokinesis, cytoskeleton-dependent cytokinesis, and positive regulation of cell-substrate adhesion were significantly associated with differentially expressed genes (DEGs) in spermatogenic cells. Moleculare function (MF) of DEGs that were up/down regulated, it was found that tubulin bindings, gap junction channels, and tripeptide transmembrane transport were more significant in our analysis. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. Cell-cell junction assembly, cell-matrix adhesion, and regulation of SNARE complex assembly were significantly correlated with common DEGs for BP. In the study of MF, U3 snoRNA binding, and cadherin binding were significantly associated with common DEGs. CONCLUSION Our analysis, leveraging single-cell data, substantiated our findings, demonstrating significant alterations in gene expression patterns.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Maryam Darvari
- Department of Cellular and Molecular Biology, Islamic Azad University, Ghaemshahr branch, Ghaemshahr, Iran
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Koya KOY45, Iran
| | - Ali Qorbanee
- Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq
| | - Dawan Jamal Hawezy
- Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq
| |
Collapse
|
7
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
8
|
Wu H, Dai X, Huang L, Li X, Wei S, Xu F. Regeneration process of severed rabbit common calcanean tendons influenced by external compression. J Orthop Surg Res 2024; 19:808. [PMID: 39609858 PMCID: PMC11603669 DOI: 10.1186/s13018-024-05305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Limited research has focused on the correlation between an external compression and the regeneration of ruptured Achilles tendons. The aim of this study was to evaluate the influence of a constricted paratenon with external compression on the regeneration process of separated rabbit common calcanean tendon stumps. METHODS A transection, establishing a 4 mm gap, was created in the right common calcanean tendon of 24 young adult male New Zealand white rabbits. The animals were assigned to two groups: In the control group, only received cast immobilization. In the constricted paratenon (CP) group, the rabbits had a local 3-dimensional printed clasp applied to mimic external compression and same cast immobilization as the control group. Morphologic, histologic and immunohistochemistry examinations were performed at 2 and 4 weeks postoperative. RESULTS Separated tendon stumps were connected by novel granulated tendon fibrils in the control group. However, the regenerated tendon fibrils appeared insufficient in the CP group, the tendon length and the adhesion grade of the CP group was significantly larger than that of the control group at 4 weeks (P < 0.05, P = 0.030). Disorganized collagen and round-shaped fibroblasts were demonstrated in the CP group. A prolonged expression of proliferating cell nuclear antigen (PCNA) and lower intensity in clusters of differentiation 146 (CD146) were also shown in the CP group. A prolonged existence of the vascular endothelial growth factor (VEGF) and lesser intensity of the transforming growth factor-beta 1 (TGF-β1) were confirmed within this group. Furthermore, the CP group's expression had less collagen I than that of the control group at 4 weeks. CONCLUSIONS Sufficient regeneration can be obtained, even though there is an obvious gap between severed rabbit common calcanean tendon stumps. However, constricted paratenons with external compression can negatively influence the intrinsic regeneration process of the tendon fibrils and promotes the disorganization of regenerated collagen.
Collapse
Affiliation(s)
- Helin Wu
- Department of Orthopaedics, General Hospital of Central Theater Command, NO. 627, Wuluo Road, Hongshan District, Wuhan, Hubei Province, 430070, PR China
- The First Clinical Medical School of Southern Medical University, Guangzhou, Guangdong Province, PR China
| | - Xiaojing Dai
- Department of Orthopaedics, General Hospital of Central Theater Command, NO. 627, Wuluo Road, Hongshan District, Wuhan, Hubei Province, 430070, PR China
| | - Lixia Huang
- Tianyuan Translational Medicine R&D Team, School of Medicine, Jianghan University, Wuhan, Hubei Province, PR China
| | - Xiaoyu Li
- Tianyuan Translational Medicine R&D Team, School of Medicine, Jianghan University, Wuhan, Hubei Province, PR China
| | - Shijun Wei
- Department of Orthopaedics, General Hospital of Central Theater Command, NO. 627, Wuluo Road, Hongshan District, Wuhan, Hubei Province, 430070, PR China.
| | - Feng Xu
- Department of Orthopaedics, General Hospital of Central Theater Command, NO. 627, Wuluo Road, Hongshan District, Wuhan, Hubei Province, 430070, PR China
| |
Collapse
|
9
|
Niayesh-Mehr R, Kalantar M, Bontempi G, Montaldo C, Ebrahimi S, Allameh A, Babaei G, Seif F, Strippoli R. The role of epithelial-mesenchymal transition in pulmonary fibrosis: lessons from idiopathic pulmonary fibrosis and COVID-19. Cell Commun Signal 2024; 22:542. [PMID: 39538298 PMCID: PMC11558984 DOI: 10.1186/s12964-024-01925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the tremendous advancements in the knowledge of the pathophysiology and clinical aspects of SARS-CoV-2 infection, still many issues remain unanswered, especially in the long-term effects. Mounting evidence suggests that pulmonary fibrosis (PF) is one of the most severe complications associated with COVID-19. Therefore, understanding the molecular mechanisms behind its development is helpful to develop successful therapeutic strategies. Epithelial to mesenchymal transition (EMT) and its cell specific variants endothelial to mesenchymal transition (EndMT) and mesothelial to mesenchymal transition (MMT) are physio-pathologic cellular reprogramming processes induced by several infectious, inflammatory and biomechanical stimuli. Cells undergoing EMT acquire invasive, profibrogenic and proinflammatory activities by secreting several extracellular mediators. Their activity has been implicated in the pathogenesis of PF in a variety of lung disorders, including idiopathic pulmonary fibrosis (IPF) and COVID-19. Aim of this article is to provide an updated survey of the cellular and molecular mechanisms, with emphasis on EMT-related processes, implicated in the genesis of PF in IFP and COVID-19.
Collapse
Affiliation(s)
- Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Saeedeh Ebrahimi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy.
| |
Collapse
|
10
|
Kremer JL, Santiago VF, Bongiovani Rodrigues F, Auricino TB, Freitas DHDO, Palmisano G, Lotfi CFP. Extracellular Matrix Protein Signatures of the Outer and Inner Zones of the Rat Adrenal Cortex. J Proteome Res 2024; 23:3418-3432. [PMID: 39018382 DOI: 10.1021/acs.jproteome.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This study analyzes the extracellular matrix (ECM) signatures of the outer (OF = capsule + subcapsular + zona glomerulosa cells) and inner fractions (IF = zona fasciculata cells) of the rat adrenal cortex, which comprise two distinct microenvironment niches. Proteomic profiles of decellularized OF and IF samples, male and female rats, identified 252 proteins, with 32 classified as ECM-component and ECM-related. Among these, 25 proteins were differentially regulated: 17 more abundant in OF, including Col1a1, Col1a2, Col6a1, Col6a2, Col6a3, Col12a1, Col14a1, Lama5, Lamb2, Lamc1, Eln, Emilin, Fbln5, Fbn1, Fbn2, Nid1, and Ltbp4, and eight more abundant in IF, including Col4a1, Col4a2, Lama2, Lama4, Lamb1, Fn1, Hspg2, and Ecm1. Eln, Tnc, and Nid2 were abundant in the female OF, while Lama2, Lama5, Lamb2, and Lamc1 were more abundant in the male IF. The complex protein signature of the OF suggests areas of tissue stress, stiffness, and regulatory proteins for growth factor signaling. The higher concentrations of Col4a1 and Col4a2 and their role in steroidogenesis should be further investigated in IF. These findings could significantly enhance our understanding of adrenal cortex functionality and its implications for human health and disease. Key findings were validated, and data are available in ProteomeXchange (PXD046828).
Collapse
Affiliation(s)
- Jean Lucas Kremer
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Veronica Feijoli Santiago
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Butantã, São Paulo, SP 05508-000, Brazil
| | - Fernanda Bongiovani Rodrigues
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Thais Barabba Auricino
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Danilo Henriques de Oliveira Freitas
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Giuseppe Palmisano
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Butantã, São Paulo, SP 05508-000, Brazil
| | - Claudimara Ferini Pacicco Lotfi
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
11
|
Azumah R, Hummitzsch K, Anderson RA, Rodgers RJ. Expression of transforming growth factor β signalling molecules and their correlations with genes in loci linked to polycystic ovary syndrome in human foetal and adult tissues. Reprod Fertil Dev 2024; 36:RD23174. [PMID: 38894494 DOI: 10.1071/rd23174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Context Altered signalling of androgens, anti-Müllerian hormone or transforming growth factor beta (TGFβ) during foetal development have been implicated in the predisposition to polycystic ovary syndrome (PCOS) in later life, aside from its genetic predisposition. In foetal ovarian fibroblasts, TGFβ1 has been shown to regulate androgen signalling and seven genes located in loci associated with PCOS. Since PCOS exhibits a myriad of symptoms, it likely involves many different organs. Aims To identify the relationships between TGFβ signalling molecules and PCOS candidate genes in different tissues associated with PCOS. Methods Using RNA sequencing data, we examined the expression patterns of TGFβ signalling molecules in the human ovary, testis, heart, liver, kidney, brain tissue, and cerebellum from 4 to 20weeks of gestation and postnatally. We also examined the correlations between gene expression of TGFβ signalling molecules and PCOS candidate genes. Key results TGFβ signalling molecules were dynamically expressed in most tissues prenatally and/or postnatally. FBN3 , a PCOS candidate gene involved in TGFβ signalling, was expressed during foetal development in all tissues. The PCOS candidate genes HMGA2, YAP1 , and RAD50 correlated significantly (P TGFBR1 in six out of the seven tissues examined. Conclusions This study suggests that possible crosstalk occurs between genes in loci associated with PCOS and TGFβ signalling molecules in multiple tissues, particularly during foetal development. Implications Thus, alteration in TGFβ signalling during foetal development could affect many tissues contributing to the multiple phenotypes of PCOS in later life.
Collapse
Affiliation(s)
- Rafiatu Azumah
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Katja Hummitzsch
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Raymond J Rodgers
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
12
|
Wang Z, Xie D, Li J, Zhai Z, Lu Z, Tian X, Niu Y, Zhao Q, Zheng P, Dong L, Wang C. Molecular force-induced liberation of transforming growth factor-beta remodels the spleen for ectopic liver regeneration. J Hepatol 2024; 80:753-763. [PMID: 38244845 DOI: 10.1016/j.jhep.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/08/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND & AIMS Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-β (TGF-β) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-β. RESULTS sHA-X efficiently bound to the abundant latent TGF-β in the spleen. It provided the molecular force to liberate the active TGF-β dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-β and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-β to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Daping Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jiayi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ziyu Zhai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhuojian Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xuejiao Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Qi Zhao
- Department of Biomedical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China; Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Resource Center for Mutant Mice, Nanjing, Jiangsu, 210023, China; Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
13
|
Foltz L, Avabhrath N, Lanchy JM, Levy T, Possemato A, Ariss M, Peterson B, Grimes M. Craniofacial chondrogenesis in organoids from human stem cell-derived neural crest cells. iScience 2024; 27:109585. [PMID: 38623327 PMCID: PMC11016914 DOI: 10.1016/j.isci.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNA-seq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes, and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role in determining chondrocyte fate.
Collapse
Affiliation(s)
- Lauren Foltz
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Nagashree Avabhrath
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Majd Ariss
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Mark Grimes
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
14
|
Biel C, Faber KN, Bank RA, Olinga P. Matrix metalloproteinases in intestinal fibrosis. J Crohns Colitis 2024; 18:462-478. [PMID: 37878770 PMCID: PMC10906956 DOI: 10.1093/ecco-jcc/jjad178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
Intestinal fibrosis is a common complication in patients with inflammatory bowel disease [IBD], in particular Crohn's disease [CD]. Unfortunately, at present intestinal fibrosis is not yet preventable, and cannot be treated by interventions other than surgical removal. Intestinal fibrosis is characterized by excessive accumulation of extracellular matrix [ECM], which is caused by activated fibroblasts and smooth muscle cells. Accumulation of ECM results from an imbalanced production and degradation of ECM. ECM degradation is mainly performed by matrix metalloproteinases [MMPs], enzymes that are counteracted by tissue inhibitors of MMPs [TIMPs]. In IBD patients, MMP activity [together with other protease activities] is increased. At the same time, CD patients have a generally lower MMP activity compared to ulcerative colitis patients, who usually do not develop intestinal strictures or fibrosis. The exact regulation and role[s] of these MMPs in fibrosis are far from understood. Here, we review the current literature about ECM remodelling by MMPs in intestinal fibrosis and their potential role as biomarkers for disease progression or druggable targets.
Collapse
Affiliation(s)
- Carin Biel
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ruud A Bank
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| |
Collapse
|
15
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
16
|
Martínez-Campa C, Álvarez-García V, Alonso-González C, González A, Cos S. Melatonin and Its Role in the Epithelial-to-Mesenchymal Transition (EMT) in Cancer. Cancers (Basel) 2024; 16:956. [PMID: 38473317 DOI: 10.3390/cancers16050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a cell-biological program that occurs during the progression of several physiological processes and that can also take place during pathological situations such as carcinogenesis. The EMT program consists of the sequential activation of a number of intracellular signaling pathways aimed at driving epithelial cells toward the acquisition of a series of intermediate phenotypic states arrayed along the epithelial-mesenchymal axis. These phenotypic features include changes in the motility, conformation, polarity and functionality of cancer cells, ultimately leading cells to stemness, increased invasiveness, chemo- and radioresistance and the formation of cancer metastasis. Amongst the different existing types of the EMT, type 3 is directly involved in carcinogenesis. A type 3 EMT occurs in neoplastic cells that have previously acquired genetic and epigenetic alterations, specifically affecting genes involved in promoting clonal outgrowth and invasion. Markers such as E-cadherin; N-cadherin; vimentin; and transcription factors (TFs) like Twist, Snail and ZEB are considered key molecules in the transition. The EMT process is also regulated by microRNA expression. Many miRNAs have been reported to repress EMT-TFs. Thus, Snail 1 is repressed by miR-29, miR-30a and miR-34a; miR-200b downregulates Slug; and ZEB1 and ZEB2 are repressed by miR-200 and miR-205, respectively. Occasionally, some microRNA target genes act downstream of the EMT master TFs; thus, Twist1 upregulates the levels of miR-10b. Melatonin is an endogenously produced hormone released mainly by the pineal gland. It is widely accepted that melatonin exerts oncostatic actions in a large variety of tumors, inhibiting the initiation, progression and invasion phases of tumorigenesis. The molecular mechanisms underlying these inhibitory actions are complex and involve a great number of processes. In this review, we will focus our attention on the ability of melatonin to regulate some key EMT-related markers, transcription factors and micro-RNAs, summarizing the multiple ways by which this hormone can regulate the EMT. Since melatonin has no known toxic side effects and is also known to help overcome drug resistance, it is a good candidate to be considered as an adjuvant drug to conventional cancer therapies.
Collapse
Affiliation(s)
- Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
17
|
Duncan D, Bernardy J, Hodkovicova N, Masek J, Prochazkova M, Jarosova R. The Superior Effect of Radiofrequency With Targeted Ultrasound for Facial Rejuvenation by Inducing Hyaluronic Acid Synthesis: A Pilot Preclinical Study. Aesthet Surg J Open Forum 2024; 6:ojae005. [PMID: 38371657 PMCID: PMC10873486 DOI: 10.1093/asjof/ojae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Background The level of dermal hyaluronic acid (HA) can be depleted by 75% at age 70. HA provides dermal hydration, volume, and thickness, making it a major component of the extracellular matrix. Restoration of dermal and epidermal HA can be achieved by combining radiofrequency (RF) energy and targeted ultrasound (TUS). The monopolar RF generates heat, with the TUS stimulating HA production. The heat induces a regenerative response in the skin, increasing the fibroblast activity and producing various extracellular matrix compounds, including HA. Objectives To investigate the effect of the simultaneous application of RF + TUS or RF + US on the stimulation of HA production. Methods Twelve animals underwent 4 treatments. Six were treated with transcutaneous RF + TUS and 6 with the combination RF + US. The opposite untreated side served as a control. Punch biopsies of the skin were taken at baseline, immediately posttreatment, 1 month, and 2 months posttreatment. The tissue was evaluated with real-time quantitative polymerase chain reaction (RT-qPCR), matrix-assisted laser desorption (MALDI) and time of flight (TOF), and confocal microscopy. Results The RT-qPCR focused on assessing the production of has1 and has2, enzymes responsible for HA synthesis. RT-qPCR results of the RF + TUS group revealed a +98% and +45% increase in hyaluronic synthetase (HAS) 1 and HAS2 production after the treatments, respectively. The MALDI-TOF revealed a +224% increase in measured HA 2 months after the treatments. The changes were also visible in the confocal microscopy. The control group showed no significant (P > .05) results in either of the evaluation methods. Conclusions Concurrent application of RF and TUS significantly enhances the natural regenerative processes in skin tissue. Level of Evidence 5
Collapse
Affiliation(s)
- Diane Duncan
- Corresponding Author: Dr Diane Duncan, 1701 East Prospect Road, Fort Collins, CO 80525, USA. E-mail: ; Instagram: @drdianeduncan
| | | | | | | | | | | |
Collapse
|
18
|
Feng X, Liu X, Xiang J, Xu J, Yin N, Wang L, Liu C, Liu Y, Zhao T, Zhao Z, Gao Y. Exosomal ITGB6 from dormant lung adenocarcinoma cells activates cancer-associated fibroblasts by KLF10 positive feedback loop and the TGF-β pathway. Transl Lung Cancer Res 2023; 12:2520-2537. [PMID: 38205211 PMCID: PMC10775012 DOI: 10.21037/tlcr-23-707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Background Dormant cancer cells are commonly known to play a pivotal role in cancer recurrence and metastasis. However, the mechanism of tumor dormancy and recurrence remains largely unknown. This study aimed to investigate the mechanism by which exosomes derived from dormant lung adenocarcinoma (LUAD) cells activate cancer-associated fibroblasts (CAFs) to reconstruct the extracellular matrix (ECM), providing a novel idea for decoding the mechanism of tumor dormancy. Methods In this study, high-dose cisplatin was used to induce the dormant LUAD cells. Exosomes were extracted from the culture supernatant of normal and dormant cancer cells. The effects of selected exosomal proteins on the fibroblasts were evaluated. RNA-seq for fibroblasts and exosomal proteomics for normal and dormant cancer cells were used to identify and verify the mechanism of activating fibroblasts. Results We demonstrated that exosomes derived from dormant A549 cells could be taken by fibroblasts. Exosomal ITGB6 transferred into fibroblasts induced the activation of CAFs by activating the KLF10 positive feedback loop and transforming growth factor β (TGF-β) pathway. High ITGB6 expression was associated with activation of the TGF-β pathway and ECM remodeling. Conclusions In all, we demonstrated that CAFs were activated by exosomes from dormant lung cancer cells and reconstruct ECM. ITGB6 may be a critical molecule for activating the TGF-β pathway and remodeling ECM.
Collapse
Affiliation(s)
- Xiang Feng
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juanjuan Xiang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Jiaqi Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Na Yin
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Lujuan Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaoyuan Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuyao Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tiantian Zhao
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zengyi Zhao
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
19
|
Nelson AL, O'Hara KM, Nolte PC, Fukase N, Murata Y, Nolte AK, Huard J, Bernholt DL, Millett PJ, Bahney CS. Engineered Decellularized Tendon Matrix Putty Preserves Native Tendon Bioactivity to Promote Cell Proliferation and Enthesis Repair. J Tissue Eng Regen Med 2023; 2023:4665795. [PMID: 40226422 PMCID: PMC11918894 DOI: 10.1155/2023/4665795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 04/15/2025]
Abstract
Rotator cuff tears are a common soft tissue injury that can significantly decrease function of the shoulder and cause severe pain. Despite progress in surgical technique, rotator cuff repairs (RCRs) do not always heal efficiently. Many failures occur at the bone-tendon interface as a result of poor healing capacity of the tendon and failure to regenerate the native histological anatomy of the enthesis. While allografts are commercially available, clinical use is limited as they do not stimulate tissue regeneration and are associated with a structural failure of up to 40% in re-tear cases. Novel tissue engineering strategies are being developed with promise, but most involve addition of cells and/or growth factors which extends the timeline for clinical translation. Thus, there exists a significant unmet clinical need for easily translatable surgical augmentation approaches that can improve healing in RCR. Here we describe the development of a decellularized tendon matrix (DTM) putty that preserves native tendon bioactivity using a novel processing technique. In vitro, DTM promoted proliferation of tenocytes and adipose-derived stem cells with an increase in expression-specific transcription factors seen during enthesis development, Scleraxis and Sox9. When placed in a rabbit model of a chronic rotator cuff tear, DTM improved histological tissue repair by promoting calcification at the bone-tendon interface more similar to the normal fibrocartilaginous enthesis. Taken together, these data indicate that the engineered DTM putty retains a pro-regenerative bioactivity that presents a promising translational strategy for improving healing at the enthesis.
Collapse
Affiliation(s)
- Anna-Laura Nelson
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
| | - Kelsey M. O'Hara
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
| | - Philip C. Nolte
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
| | - Naomasa Fukase
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
| | - Yoichi Murata
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
| | - Anna-Katharina Nolte
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
| | - Johnny Huard
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
| | - David L. Bernholt
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
| | - Peter J. Millett
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
- The Steadman Clinic, Vail, Colorado, USA
| | - Chelsea S. Bahney
- Steadman Philippon Research Institute (SPRI), Center for Regenerative Sports Medicine, Vail, Colorado, USA
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
20
|
Wu S, Luwor RB, Zhu HJ. Dynamics of transforming growth factor β signaling and therapeutic efficacy. Growth Factors 2023; 41:82-100. [PMID: 37229558 DOI: 10.1080/08977194.2023.2215335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFβ signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFβ signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFβ signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFβ signalling in cancer, pointing to a new direction of research on TGFβ-targeted therapeutics.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Rodney Brian Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
21
|
Boi R, Ebefors K, Nyström J. The role of the mesangium in glomerular function. Acta Physiol (Oxf) 2023; 239:e14045. [PMID: 37658606 DOI: 10.1111/apha.14045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
When discussing glomerular function, one cell type is often left out, the mesangial cell (MC), probably since it is not a part of the filtration barrier per se. The MCs are instead found between the glomerular capillaries, embedded in their mesangial matrix. They are in direct contact with the endothelial cells and in close contact with the podocytes and together they form the glomerulus. The MCs can produce and react to a multitude of growth factors, cytokines, and other signaling molecules and are in the perfect position to be a central hub for crosstalk communication between the cells in the glomerulus. In certain glomerular diseases, for example, in diabetic kidney disease or IgA nephropathy, the MCs become activated resulting in mesangial expansion. The expansion is normally due to matrix expansion in combination with either proliferation or hypertrophy. With time, this expansion can lead to fibrosis and decreased glomerular function. In addition, signs of complement activation are often seen in biopsies from patients with glomerular disease affecting the mesangium. This review aims to give a better understanding of the MCs in health and disease and their role in glomerular crosstalk and inflammation.
Collapse
Affiliation(s)
- Roberto Boi
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Edsfeldt A, Singh P, Matthes F, Tengryd C, Cavalera M, Bengtsson E, Dunér P, Volkov P, Karadimou G, Gisterå A, Orho-Melander M, Nilsson J, Sun J, Gonçalves I. Transforming growth factor-β2 is associated with atherosclerotic plaque stability and lower risk for cardiovascular events. Cardiovasc Res 2023; 119:2061-2073. [PMID: 37200403 PMCID: PMC10478752 DOI: 10.1093/cvr/cvad079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 05/20/2023] Open
Abstract
AIMS Transforming growth factor-beta (TGF-β) exists in three isoforms TGF-β1, -β2, and -β3. TGF-β1 has been suggested to be important for maintaining plaque stability, yet the role of TGF-β2 and -β3 in atherosclerosis remains to be investigated.This study explores the association of the three isoforms of TGF-β with plaque stability in the human atherosclerotic disease. METHODS AND RESULTS TGF-β1, -β2, and -β3 proteins were quantified in 223 human carotid plaques by immunoassays. Indications for the endarterectomy were: symptomatic carotid plaque with stenosis >70% or without symptoms and >80% stenosis. Plaque mRNA levels were assessed by RNA sequencing. Plaque components and extracellular matrix were measured histologically and biochemically. Matrix metalloproteinases and monocyte chemoattractant protein-1 (MCP-1) was measured with immunoassays. The effect of TGF-β2 on inflammation and protease activity was investigated in vitro using THP-1 and RAW264.7 macrophages. Patients were followed longitudinally for cardiovascular (CV) events.TGF-β2 was the most abundant isoform and was increased at both protein and mRNA levels in asymptomatic plaques. TGF-β2 was the main determinant separating asymptomatic plaques in an Orthogonal Projections to Latent Structures Discriminant Analysis. TGF-β2 correlated positively to features of plaque stability and inversely to markers of plaque vulnerability. TGF-β2 was the only isoform inversely correlated to the matrix-degrading matrix metalloproteinase-9 and inflammation in the plaque tissue. In vitro, TGF-β2 pre-treatment reduced MCP-1 gene and protein levels as well as matrix metalloproteinase-9 gene levels and activity. Patients with plaques with high TGF-β2 levels had a lower risk to suffer from future CV events. CONCLUSIONS TGF-β2 is the most abundant TGF-β isoform in human plaques and may maintain plaque stability by decreasing inflammation and matrix degradation.
Collapse
Affiliation(s)
- Andreas Edsfeldt
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Pratibha Singh
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Frank Matthes
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | | | - Michele Cavalera
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms—Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Pontus Dunér
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Petr Volkov
- Department of Clinical Sciences, LUDC Bioinformatics Unit, Malmö, Lund University, Lund, Sweden
- Data Science and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Glykeria Karadimou
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Anton Gisterå
- Department of Medicine, Center for Molecular Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - Jan Nilsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Jiangming Sun
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
23
|
Nojszewska N, Idilli O, Sarkar D, Ahouiyek Z, Arroyo-Berdugo Y, Sandoval C, Amin-Anjum MS, Bowers S, Greaves D, Saeed L, Khan M, Salti S, Al-Shami S, Topoglu H, Punzalan JK, Farias JG, Calle Y. Bone marrow mesenchymal/fibroblastic stromal cells induce a distinctive EMT-like phenotype in AML cells. Eur J Cell Biol 2023; 102:151334. [PMID: 37354622 DOI: 10.1016/j.ejcb.2023.151334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
The development of epithelial-to-mesenchymal transition (EMT) like features is emerging as a critical factor involved in the pathogenesis of acute myeloid leukaemia (AML). However, the extracellular signals and the signalling pathways in AML that may regulate EMT remain largely unstudied. We found that the bone marrow (BM) mesenchymal/fibroblastic cell line HS5 induces an EMT-like migratory phenotype in AML cells. AML cells underwent a strong increase of vimentin (VIM) levels that was not mirrored to the same extent by changes of expression of the other EMT core proteins SNAI1 and SNAI2. We validated these particular pattern of co-expression of core-EMT markers in AML cells by performing an in silico analysis using datasets of human tumours. Our data showed that in AML the expression levels of VIM does not completely correlate with the co-expression of core EMT markers observed in epithelial tumours. We also found that vs epithelial tumours, AML cells display a distinct patterns of co-expression of VIM and the actin binding and adhesion regulatory proteins that regulate F-actin dynamics and integrin-mediated adhesions involved in the invasive migration in cells undergoing EMT. We conclude that the BM stroma induces an EMT related pattern of migration in AML cells in a process involving a distinctive regulation of EMT markers and of regulators of cell adhesion and actin dynamics that should be further investigated. Understanding the tumour specific signalling pathways associated with the EMT process may contribute to the development of new tailored therapies for AML as well as in different types of cancers.
Collapse
Affiliation(s)
- N Nojszewska
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - O Idilli
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - D Sarkar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Z Ahouiyek
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Y Arroyo-Berdugo
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - C Sandoval
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - M S Amin-Anjum
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Bowers
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - D Greaves
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - L Saeed
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - M Khan
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Salti
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Al-Shami
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - H Topoglu
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - J K Punzalan
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - J G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Y Calle
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
24
|
Sahota VK, Stone A, Woodling NS, Spiers JG, Steinert JR, Partridge L, Augustin H. Plum modulates Myoglianin and regulates synaptic function in D. melanogaster. Open Biol 2023; 13:230171. [PMID: 37699519 PMCID: PMC10497343 DOI: 10.1098/rsob.230171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Alterations in the neuromuscular system underlie several neuromuscular diseases and play critical roles in the development of sarcopenia, the age-related loss of muscle mass and function. Mammalian Myostatin (MST) and GDF11, members of the TGF-β superfamily of growth factors, are powerful regulators of muscle size in both model organisms and humans. Myoglianin (MYO), the Drosophila homologue of MST and GDF11, is a strong inhibitor of synaptic function and structure at the neuromuscular junction in flies. Here, we identified Plum, a transmembrane cell surface protein, as a modulator of MYO function in the larval neuromuscular system. Reduction of Plum in the larval body-wall muscles abolishes the previously demonstrated positive effect of attenuated MYO signalling on both muscle size and neuromuscular junction structure and function. In addition, downregulation of Plum on its own results in decreased synaptic strength and body weight, classifying Plum as a (novel) regulator of neuromuscular function and body (muscle) size. These findings offer new insights into possible regulatory mechanisms behind ageing- and disease-related neuromuscular dysfunctions in humans and identify potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Virender K. Sahota
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Aelfwin Stone
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nathaniel S. Woodling
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Jereme G. Spiers
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Joern R. Steinert
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Linda Partridge
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| |
Collapse
|
25
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
26
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 PMCID: PMC11659964 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
27
|
Kuziel G, Moore BN, Arendt LM. Obesity and Fibrosis: Setting the Stage for Breast Cancer. Cancers (Basel) 2023; 15:cancers15112929. [PMID: 37296891 DOI: 10.3390/cancers15112929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a rising health concern and is linked to a worsened breast cancer prognosis. Tumor desmoplasia, which is characterized by elevated numbers of cancer-associated fibroblasts and the deposition of fibrillar collagens within the stroma, may contribute to the aggressive clinical behavior of breast cancer in obesity. A major component of the breast is adipose tissue, and fibrotic changes in adipose tissue due to obesity may contribute to breast cancer development and the biology of the resulting tumors. Adipose tissue fibrosis is a consequence of obesity that has multiple sources. Adipocytes and adipose-derived stromal cells secrete extracellular matrix composed of collagen family members and matricellular proteins that are altered by obesity. Adipose tissue also becomes a site of chronic, macrophage-driven inflammation. Macrophages exist as a diverse population within obese adipose tissue and mediate the development of fibrosis through the secretion of growth factors and matricellular proteins and interactions with other stromal cells. While weight loss is recommended to resolve obesity, the long-term effects of weight loss on adipose tissue fibrosis and inflammation within breast tissue are less clear. Increased fibrosis within breast tissue may increase the risk for tumor development as well as promote characteristics associated with tumor aggressiveness.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Lisa M Arendt
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
28
|
Lee K, Jackson A, John N, Zhang R, Ozhava D, Bhatia M, Mao Y. Bovine Fibroblast-Derived Extracellular Matrix Promotes the Growth and Preserves the Stemness of Bovine Stromal Cells during In Vitro Expansion. J Funct Biomater 2023; 14:jfb14040218. [PMID: 37103308 PMCID: PMC10144935 DOI: 10.3390/jfb14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Cultivated meat is a fast-growing research field and an industry with great potential to overcome the limitations of traditional meat production. Cultivated meat utilizes cell culture and tissue engineering technologies to culture a vast number of cells in vitro and grow/assemble them into structures mimicking the muscle tissues of livestock animals. Stem cells with self-renewal and lineage-specific differentiation abilities have been considered one of the key cell sources for cultivated meats. However, the extensive in vitro culturing/expansion of stem cells results in a reduction in their abilities to proliferate and differentiate. Extracellular matrix (ECM) has been used as a culturing substrate to support cell expansion for cell-based therapies in regenerative medicine due to its resemblance to the native microenvironment of cells. In this study, the effect of the ECM on the expansion of bovine umbilical cord stromal cells (BUSC) in vitro was evaluated and characterized. BUSCs with multi-lineage differentiation potentials were isolated from bovine placental tissue. Decellularized ECM prepared from a confluent monolayer of bovine fibroblasts (BF) is free of cellular components but contains major ECM proteins such as fibronectin and type I collagen and ECM-associated growth factors. Expansion of BUSC on ECM for three passages (around three weeks) resulted in about 500-fold amplification, while cells were amplified less than 10-fold when cultured on standard tissue culture plates (TCP). Moreover, the presence of ECM reduced the requirement for serum in the culture medium. Importantly, the cells amplified on ECM retained their differentiation abilities better than cells cultured on TCP. The results of our study support the notion that monolayer cell-derived ECM may be a strategy to expand bovine cells in vitro effectively and efficiently.
Collapse
Affiliation(s)
- Kathleen Lee
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Anisha Jackson
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Nikita John
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Ryan Zhang
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Derya Ozhava
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Mohit Bhatia
- Atelier Meats, 666 Burrard Street, Suite 500, Vancouver, BC V6C 3P6, Canada
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
30
|
Chen Y, Lu C, Shang X, Wu K, Chen K. Primary cilia: The central role in the electromagnetic field induced bone healing. Front Pharmacol 2022; 13:1062119. [DOI: 10.3389/fphar.2022.1062119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Primary cilia have emerged as the cellular “antenna” that can receive and transduce extracellular chemical/physical signals, thus playing an important role in regulating cellular activities. Although the electromagnetic field (EMF) is an effective treatment for bone fractures since 1978, however, the detailed mechanisms leading to such positive effects are still unclear. Primary cilia may play a central role in receiving EMF signals, translating physical signals into biochemical information, and initiating various signalingsignaling pathways to transduce signals into the nucleus. In this review, we elucidated the process of bone healing, the structure, and function of primary cilia, as well as the application and mechanism of EMF in treating fracture healing. To comprehensively understand the process of bone healing, we used bioinformatics to analyze the molecular change and associated the results with other studies. Moreover, this review summarizedsummarized some limitations in EMFs-related research and provides an outlook for ongoing studies. In conclusion, this review illustrated the primary cilia and related molecular mechanisms in the EMF-induced bone healing process, and it may shed light on future research.
Collapse
|
31
|
Wu HJ, Kuchtey RW, Kuchtey J. Optic neuropathy associated with TGFβ dysregulation in mice with a glaucoma-causative mutation of ADAMTS10. Matrix Biol 2022; 113:83-99. [PMID: 36216203 PMCID: PMC10001177 DOI: 10.1016/j.matbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 12/11/2022]
Abstract
Glaucoma is a neurodegenerative disease that causes irreversible blindness due to loss of retinal ganglion cells (RGCs) and their axons. We previously identified a G661R mutation of ADAMTS10 (A Disintegrin And Metalloproteinase with ThromboSpondin type 1 motif 10) as the disease-causing mutation in a beagle model of glaucoma. ADAMTS10 is a secreted matrix metalloproteinase that belongs to the ADAMTS family which is involved in extracellular matrix (ECM) turnover. Previous studies have shown that ADAMTS10 binds fibrillin microfibrils, promotes their formation, and influences their fibrillin isoform composition. Here, we established a mouse model carrying the G661R mutation of ADAMTS10 (ADAMTS10G661R/G661R) to investigate its ocular phenotypes related to glaucoma and to explore possible functions of ADAMTS10. We found that ADAMTS10 was expressed in the inner retina and along RGC axons in the optic nerve. However, ADAMTS10 was not colocalized with fibrillin microfibrils in these tissues, suggesting fibrillin-independent function for ADAMTS10. In electroretinogram experiments, we found that ADAMTS10G661R/G661R mice had reduced amplitude of retinal responses to dim light stimulus, indicating RGC dysfunction. The reduced RGC function coincided with RGC axon structural changes manifested as smaller optic nerves and fewer optic nerve axons, which may contribute to glaucoma. The reduced number of optic nerve axons found for ADAMTS10G661R/G661R mice occurred early, suggesting developmental deficits. Subsequent experiments found increased apoptosis in the retina of ADAMTS10G661R/G661R mice during postnatal development, which could result in fewer RGCs produced, accounting for fewer optic nerve axons in adulthood. Consistent with a protective effect of transforming growth factor β (TGFβ) signaling against apoptosis during retinal development as shown previously by others, we found increased apoptosis accompanied by decreased TGFβ signaling in the developing retina of ADAMTS10G661R/G661R mice, suggesting a novel role for ADAMTS10 in regulating TGFβ signaling which could involve direct interaction between ADAMTS10 and latent TGFβ.
Collapse
Affiliation(s)
- Hang-Jing Wu
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 MCN, Nashville, TN 37232-8808, USA
| | - Rachel W Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 MCN, Nashville, TN 37232-8808, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232-0022, USA
| | - John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 MCN, Nashville, TN 37232-8808, USA.
| |
Collapse
|
32
|
Ainsworth RI, Hammaker D, Nygaard G, Ansalone C, Machado C, Zhang K, Zheng L, Carrillo L, Wildberg A, Kuhs A, Svensson MND, Boyle DL, Firestein GS, Wang W. Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes implicates cell line-specific transcription factor function. Nat Commun 2022; 13:6221. [PMID: 36266270 PMCID: PMC9584907 DOI: 10.1038/s41467-022-33785-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is an immune-mediated disease affecting diarthrodial joints that remains an unmet medical need despite improved therapy. This limitation likely reflects the diversity of pathogenic pathways in RA, with individual patients demonstrating variable responses to targeted therapies. Better understanding of RA pathogenesis would be aided by a more complete characterization of the disease. To tackle this challenge, we develop and apply a systems biology approach to identify important transcription factors (TFs) in individual RA fibroblast-like synoviocyte (FLS) cell lines by integrating transcriptomic and epigenomic information. Based on the relative importance of the identified TFs, we stratify the RA FLS cell lines into two subtypes with distinct phenotypes and predicted active pathways. We biologically validate these predictions for the top subtype-specific TF RARα and demonstrate differential regulation of TGFβ signaling in the two subtypes. This study characterizes clusters of RA cell lines with distinctive TF biology by integrating transcriptomic and epigenomic data, which could pave the way towards a greater understanding of disease heterogeneity.
Collapse
Affiliation(s)
- Richard I Ainsworth
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Deepa Hammaker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gyrid Nygaard
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Cecilia Ansalone
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Camilla Machado
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kai Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Lucy Carrillo
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andre Wildberg
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Kuhs
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mattias N D Svensson
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - David L Boyle
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gary S Firestein
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Trelford CB, Dagnino L, Di Guglielmo GM. Transforming growth factor-β in tumour development. Front Mol Biosci 2022; 9:991612. [PMID: 36267157 PMCID: PMC9577372 DOI: 10.3389/fmolb.2022.991612] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a ubiquitous cytokine essential for embryonic development and postnatal tissue homeostasis. TGFβ signalling regulates several biological processes including cell growth, proliferation, apoptosis, immune function, and tissue repair following injury. Aberrant TGFβ signalling has been implicated in tumour progression and metastasis. Tumour cells, in conjunction with their microenvironment, may augment tumourigenesis using TGFβ to induce epithelial-mesenchymal transition, angiogenesis, lymphangiogenesis, immune suppression, and autophagy. Therapies that target TGFβ synthesis, TGFβ-TGFβ receptor complexes or TGFβ receptor kinase activity have proven successful in tissue culture and in animal models, yet, due to limited understanding of TGFβ biology, the outcomes of clinical trials are poor. Here, we review TGFβ signalling pathways, the biology of TGFβ during tumourigenesis, and how protein quality control pathways contribute to the tumour-promoting outcomes of TGFβ signalling.
Collapse
Affiliation(s)
- Charles B. Trelford
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Children’s Health Research Institute and Lawson Health Research Institute, London, ON, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
34
|
Breast Cancer Treatment Decreases Serum Levels of TGF-β1, VEGFR2, and TIMP-2 Compared to Healthy Volunteers: Significance for Therapeutic Outcomes? PATHOPHYSIOLOGY 2022; 29:537-554. [PMID: 36136069 PMCID: PMC9500649 DOI: 10.3390/pathophysiology29030042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Various complications from a breast cancer treatment, in the pathogenesis of which excessive tissue fibrosis plays a leading role, are a common pathology. In this study, the levels of TGF-β1, VEGFR-2, and TIMP-2 were determined by the immuno-enzyme serum analysis for patients during the long-term period after breast cancer treatment as potential markers of fibrosis. The single-center study enrolled 92 participants, which were divided into two age-matched groups: (1) 67 patients following breast cancer treatment, and (2) 25 healthy female volunteers. The intergroup analysis demonstrated that the patients after breast cancer treatment showed a decrease in the serum levels of TGF-β1 (U = 666, p < 0.001) and TIMP-2 (U = 637, p < 0.001) as compared to the group of healthy volunteers. The levels of VEGFR-2 in these groups were comparable (U = 1345, p = 0.082). It was also found that the type of treatment, the presence of lymphedema, shoulder joint contracture, and changes in lymphoscintigraphy did not affect the levels of TGF-β1, VEGFR-2, and TIMP-2 within the group of patients after breast cancer treatment. These results may indicate that these biomarkers do not play a leading role in the maintenance and progression of fibrosis in the long-term period after breast cancer treatment. The reduced levels of TGF-β1 and TIMP-2 may reflect endothelial dysfunction caused by the antitumor therapy.
Collapse
|
35
|
Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev 2022; 41:627-647. [PMID: 35435599 PMCID: PMC9470689 DOI: 10.1007/s10555-022-10031-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Women with obesity who develop breast cancer have a worsened prognosis with diminished survival rates and increased rates of metastasis. Obesity is also associated with decreased breast cancer response to endocrine and chemotherapeutic treatments. Studies utilizing multiple in vivo models of obesity as well as human breast tumors have enhanced our understanding of how obesity alters the breast tumor microenvironment. Changes in the complement and function of adipocytes, adipose-derived stromal cells, immune cells, and endothelial cells and remodeling of the extracellular matrix all contribute to the rapid growth of breast tumors in the context of obesity. Interactions of these cells enhance secretion of cytokines and adipokines as well as local levels of estrogen within the breast tumor microenvironment that promote resistance to multiple therapies. In this review, we will discuss our current understanding of the impact of obesity on the breast tumor microenvironment, how obesity-induced changes in cellular interactions promote resistance to breast cancer treatments, and areas for development of treatment interventions for breast cancer patients with obesity.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Genevra Kuziel
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr. Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
36
|
Lack of extracellular matrix switches TGF-β induced apoptosis of endometrial cells to epithelial to mesenchymal transition. Sci Rep 2022; 12:14821. [PMID: 36050359 PMCID: PMC9437059 DOI: 10.1038/s41598-022-18976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
The extracellular matrix and the correct establishment of epithelial cell polarity plays a critical role in epithelial cell homeostasis and cell polarity. In addition, loss of tissue structure is a hallmark of carcinogenesis. In this study, we have addressed the role of extracellular matrix in the cellular responses to TGF-β. It is well known that TGF-β is a double-edged sword: it acts as a tumor suppressor in normal epithelial cells, but conversely has tumor-promoting effects in tumoral cells. However, the factors that determine cellular outcome in response to TGF-β remain controversial. Here, we have demonstrated that the lack of extracellular matrix and consequent loss of cell polarity inhibits TGF-β-induced apoptosis, observed when endometrial epithelial cells are polarized in presence of extracellular matrix. Rather, in absence of extracellular matrix, TGF-β-treated endometrial epithelial cells display features of epithelial-to-mesenchymal transition. We have also investigated the molecular mechanism of such a switch in cellular response. On the one hand, we found that the lack of Matrigel results in increased AKT signaling which is sufficient to inhibit TGF-β-induced apoptosis. On the other hand, we demonstrate that TGF-β-induced epithelial-to-mesenchymal transition requires ERK and SMAD2/3 activation. In summary, we demonstrate that loss of cell polarity changes the pro-apoptotic function of TGF-β to tumor-associated phenotype such as epithelial-to-mesenchymal transition. These results may be important for understanding the dual role of TGF-β in normal versus tumoral cells.
Collapse
|
37
|
Singh K, Sachan N, Ene T, Dabovic B, Rifkin D. Latent Transforming Growth Factor β Binding Protein 3 Controls Adipogenesis. Matrix Biol 2022; 112:155-170. [PMID: 35933071 DOI: 10.1016/j.matbio.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Transforming growth factor-beta (TGFβ) is released from cells as part of a trimeric latent complex consisting of TGFβ, the TGFβ propeptides, and either a latent TGFβ binding protein (LTBP) or glycoprotein-A repetitions predominant (GARP) protein. LTBP1 and 3 modulate latent TGFβ function with respect to secretion, matrix localization, and activation and, therefore, are vital for the proper function of the cytokine in a number of tissues. TGFβ modulates stem cell differentiation into adipocytes (adipogenesis), but the potential role of LTBPs in this process has not been studied. We observed that 72 h post adipogenesis initiation Ltbp1, 2, and 4 expression levels decrease by 74-84%, whereas Ltbp3 expression levels remain constant during adipogenesis. We found that LTBP3 silencing in C3H/10T1/2 cells reduced adipogenesis, as measured by the percentage of cells with lipid vesicles and the expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). Lentiviral mediated expression of an Ltbp3 mRNA resistant to siRNA targeting rescued the phenotype, validating siRNA specificity. Knockdown (KD) of Ltbp3 expression in 3T3-L1, M2, and primary bone marrow stromal cells (BMSC) indicated a similar requirement for Ltbp3. Epididymal and inguinal white adipose tissue fat pad weights of Ltbp3-/- mice were reduced by 62% and 57%, respectively, compared to wild-type mice. Inhibition of adipogenic differentiation upon LTBP3 loss is mediated by TGFβ, as TGFβ neutralizing antibody and TGFβ receptor I kinase blockade rescue the LTBP3 KD phenotype. These results indicate that LTBP3 has a TGFβ-dependent function in adipogenesis both in vitro and possibly in vivo.
Collapse
Affiliation(s)
- Karan Singh
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nalani Sachan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Taylor Ene
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Branka Dabovic
- Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel Rifkin
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA; Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Aizawa H, Uematsu T, Sato A, Masuki H, Kawabata H, Tsujino T, Isobe K, Kitamura Y, Nagata M, Nakata K, Kawase T. Non-destructive, spectrophotometric analysis of the thickness of the cell-multilayered periosteal sheet. Int J Implant Dent 2022; 8:21. [PMID: 35491414 PMCID: PMC9058046 DOI: 10.1186/s40729-022-00419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Autologous tissue-engineered periosteal sheets, which have been clinically applied for periodontal regeneration, sinus lift, and alveolar ridge augmentation, are enriched with osteoblast precursor cells and the abundant deposition of collagen type I in the extracellular spaces. Their quality is inspected prior to clinical use; however, most criteria cannot be evaluated without sacrificing samples. To reduce such losses, we developed a non-destructive optical method that can quantitatively evaluate the thickness of the periosteal sheet. Methods Dispersed periosteal cells were inoculated into small pieces of collagen sponge (Terudermis®) and plated into 60-mm dishes for further explant culture using a conventional medium and a stem-cell culture medium. The thickness of periosteal sheets was evaluated using inverted microscopic, histological, labeling (CellVue®)-based imaging and spectrophotometric (Spectro-1®) methods. Results The three-dimensional growth of periosteal sheets did not necessarily correlate with two-dimensional growth. The periosteal sheet prepared with the stem-cell medium formed cell multilayers, a phenomenon that could be observed qualitatively by inverted microscopy. The spectrophotometric analysis enabled the quantitative evaluation of the thickness of the cell multilayer without sacrificing the samples processed for scheduled cell therapy. Conclusions The growth of periosteal sheets is influenced by several major factors, including the basic quality of the individual original periosteal tissue segments, the technical expertise of doctors and operators involved in tissue harvesting and processing, and culture conditions. This newly developed spectrophotometric analysis can quantify the thickness of cell-multilayered periosteal sheets for quality assurance in a non-destructive manner, thereby contributing to better bone augmentation prior to implant therapy.
Collapse
|
39
|
Liu Q, Muralidharan A, Saateh A, Ding Z, Ten Dijke P, Boukany PE. A Programmable Multifunctional 3D Cancer Cell Invasion Micro Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107757. [PMID: 35266306 DOI: 10.1002/smll.202107757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In the research of cancer cell invasion and metastasis, recreation of physiologically relevant and faithful three-dimensional (3D) tumor models that recapitulate spatial architecture, spatiotemporal control of cell communication and signaling pathways, and integration of extracellular cues remains an open challenge. Here, a programmable multifunctional 3D cancer cell invasion microbuckets-hydrogel (Mb-H) platform is developed by integrating various function-variable microbuckets and extracellular matrix (ECM)-like hydrogels. Based on this Mb-H micro platform, the aggregation of multi-cancer cells is well controlled to form cancer cell spheroids, and the guiding relationship of single-cell migration and collective cell migration during the epithelial-mesenchymal transition (EMT) of cancer cell invasion are demonstrated. By programming and precisely assembling multiple functions in one system, the Mb-H platform with spatial-temporal controlled release of cytokine transforming growth factor beta (TGF-β) and various functionalized Mb-H platforms with intelligent adjustment of cell-matrix interactions are engineered to coordinate the 3D invasive migration of cancer cell spheroids. This programmable and adaptable 3D cancer cell invasion micro platform takes a new step toward mimicking the dynamically changing (localized) tumor microenvironment and exhibits wide potential applications in cancer research, bio-fabrication, cell signaling, and drug screening.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Guangzhou Laboratory, XingDaoHuanBei Road 9, Guangzhou International Bio Island, Guangzhou, Guangdong Province, 510005, P. R. China
| | - Aswin Muralidharan
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Abtin Saateh
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Zhaoying Ding
- Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333 ZC, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
40
|
Janulaityte I, Januskevicius A, Rimkunas A, Palacionyte J, Vitkauskiene A, Malakauskas K. Asthmatic Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells and Pulmonary Fibroblasts. Int J Mol Sci 2022; 23:4086. [PMID: 35456903 PMCID: PMC9031271 DOI: 10.3390/ijms23084086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-β. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF. A total of 34 study subjects were recruited: 14 with allergic asthma (AA), 9 with severe non-allergic eosinophilic asthma (SNEA), and 11 healthy subjects (HS). All AA patients underwent bronchial allergen challenge with D. pteronyssinus. The peripheral blood eosinophils were isolated using high-density centrifugation and magnetic separation. The individual cell cultures were made using hTERT ASMC and MRC-5 cell lines and the subjects' eosinophils. The gene expression of ECM and the TGF-β signaling pathway was analyzed using qRT-PCR. We found that asthmatic eosinophils significantly promoted collagen I, fibronectin, versican, tenascin C, decorin, vitronectin, periostin, vimentin, MMP-9, ADAM33, TIMP-1, and TIMP-2 gene expression in ASMC and collagen I, collagen III, fibronectin, elastin, decorin, MMP-2, and TIMP-2 gene expression in PF compared with the HS eosinophil effect. The asthmatic eosinophils significantly increased the gene expression of several canonical and non-canonical TGF-β signaling pathway components in ASMC and PF compared with the HS eosinophil effect. The allergen-activated AA and SNEA eosinophils had a greater effect on these changes. In conclusion, asthmatic eosinophils, especially SNEA and allergen-activated eosinophils, imbalanced the gene expression of ECM proteins and their degradation-regulating proteins. These changes were associated with increased gene expression of TGF-β signaling pathway molecules in ASMC and PF.
Collapse
Affiliation(s)
- Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
41
|
Sharma V, Letson J, Furuta S. Fibrous stroma: Driver and passenger in cancer development. Sci Signal 2022; 15:eabg3449. [PMID: 35258999 DOI: 10.1126/scisignal.abg3449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cumulative evidence shows that fibrogenic stroma and stiff extracellular matrix (ECM) not only result from tumor growth but also play pivotal roles in cellular transformation and tumor initiation. This emerging concept may largely account for the increased cancer risk associated with environmental fibrogenic agents, such as asbestos and silica, and with chronic conditions that are fibrogenic, such as obesity and diabetes. It may also contribute to poor outcomes in patients treated with certain chemotherapeutics that can promote fibrosis, such as bleomycin and methotrexate. Although the mechanistic details of this phenomenon are still being unraveled, we provide an overview of the experimental evidence linking fibrogenic stroma and tumor initiation. In this Review, we will summarize the causes and consequences of fibrous stroma and how this stromal cue is transmitted to the nuclei of parenchymal cells through a physical continuum from the ECM to chromatin, as well as ECM-dependent biochemical signaling that contributes to cellular transformation.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
42
|
Tschernia NP, Gulley JL. Tumor in the Crossfire: Inhibiting TGF-β to Enhance Cancer Immunotherapy. BioDrugs 2022; 36:153-180. [PMID: 35353346 PMCID: PMC8986721 DOI: 10.1007/s40259-022-00521-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Cancer immunotherapy using monoclonal antibodies targeting immune checkpoints has undoubtedly revolutionized the cancer treatment landscape in the last decade. Immune checkpoint inhibitors can elicit long-lasting, previously unheard-of responses in a number of tumor entities. Yet, even in such tumors as metastatic melanoma and non-small cell-lung cancer, in which immune checkpoint inhibition has become the first-line treatment of choice, only a minority of patients will benefit considerably from these treatments. This has been attributed to a number of factors, including an immune-suppressive tumor microenvironment (TME). Using different modalities to break these barriers is of utmost importance to expand the population of patients that benefit from immune checkpoint inhibition. The multifunctional cytokine transforming growth factor-β (TGF-β) has long been recognized as an immune-suppressive factor in the TME. A considerable number of drugs have been developed to target TGF-β, yet most of these have since been discontinued. The combination of anti-TGF-β agents with immune checkpoint inhibitors now has the potential to revive this target as a viable immunomodulatory therapeutic approach. Currently, a limited number of small molecular inhibitor and monoclonal antibody candidates that target TGF-β are in clinical development in combination with the following immune checkpoint inhibitors: SRK 181, an antibody inhibiting the activation of latent TGF-β1; NIS 793, a monoclonal antibody targeting TGF-β; and SHR 1701, a fusion protein consisting of an anti-PD-L1 monoclonal antibody fused with the extracellular domain of human TGF-β receptor II. Several small molecular inhibitors are also in development and are briefly reviewed: LY364947, a pyrazole-based small molecular inhibitor of the serine-threonine kinase activity of TGFβRI; SB-431542, an inhibitor targeting several TGF-β superfamily Type I activin receptor-like kinases as well as TGF-β1-induced nuclear Smad3 localization; and galunisertib, an oral small molecular inhibitor of the TGFβRI kinase. One of the most advanced agents in this area is bintrafusp alfa, a bifunctional fusion protein composed of the extracellular domain of TGF-β receptor II fused to a human IgG1 mAb blocking PD-L1. Bintrafusp alfa is currently in advanced clinical development and as an agent in this space with the most clinical experience, is a focused highlight of this review.
Collapse
Affiliation(s)
- Nicholas P Tschernia
- Genitourinary Malignancies Branch, Medical Oncology Service, National Cancer Institute, Building 10, Room 13N240, Bethesda, MD, 20892, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Medical Oncology Service, National Cancer Institute, Building 10, Room 13N240, Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Hong AY, Lee SJ, Lee KB, Shin JW, Jeong EM, Kim IG. Double-Stranded RNA Enhances Matrix Metalloproteinase-1 and -13 Expressions through TLR3-Dependent Activation of Transglutaminase 2 in Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23052709. [PMID: 35269849 PMCID: PMC8911030 DOI: 10.3390/ijms23052709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
UV-irradiation induces the secretion of double-stranded RNA (dsRNA) derived from damaged noncoding RNAs in keratinocytes, which enhance the expression of matrix metalloproteinases (MMP) in non-irradiated dermal fibroblasts, leading to dysregulation of extracellular matrix homeostasis. However, the signaling pathway responsible for dsRNA-induced MMP expression has not been fully understood. Transglutaminase 2 (TG2) is an enzyme that modifies substrate proteins by incorporating polyamine or crosslinking of proteins, thereby regulating their functions. In this study, we showed that TG2 mediates dsRNA-induced MMP-1 expression through NF-κB activation. Treatment of poly(I:C), a synthetic dsRNA analogue binding to toll-like receptor 3 (TLR3), generates ROS, which in turn activates TG2 in dermal fibroblast. Subsequently, TG2 activity enhances translocation of p65 into the nucleus, where it augments transcription of MMP. We confirmed these results by assessing the level of MMP expression in Tlr3−/−, TG2-knockdowned and Tgm2−/− dermal fibroblasts after poly(I:C)-treatment. Moreover, treatment with quercetin showed dose-dependent suppression of poly(I:C)-induced MMP expression. Furthermore, ex vivo cultured skin from Tgm2−/− mice exhibited a significantly reduced level of MMP mRNA compared with those from wild-type mice. Our results indicate that TG2 is a critical regulator in dsRNA-induced MMP expression, providing a new target and molecular basis for antioxidant therapy in preventing collagen degradation.
Collapse
Affiliation(s)
- Ah-Young Hong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Seok-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul 03127, Korea
| | - Ji-Woong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju 63243, Korea;
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul 03127, Korea
- Department of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence:
| |
Collapse
|
44
|
Toyoda S, Shin J, Fukuhara A, Otsuki M, Shimomura I. Transforming growth factor β1 signaling links extracellular matrix remodeling to intracellular lipogenesis upon physiological feeding events. J Biol Chem 2022; 298:101748. [PMID: 35189145 PMCID: PMC8931428 DOI: 10.1016/j.jbc.2022.101748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue dynamically changes its mass in response to external nutritional status, which plays an important role in maintaining the lipid homeostasis. Physiologically, feeding events are associated with the expansion of adipose tissue, but little is known about the detailed molecular mechanisms of this expansion. Here, using comprehensive transcriptome analysis, we found that levels of transforming growth factor β1 (TGF-β1), a key regulator of extracellular matrix (ECM) remodeling, were increased in adipose tissue under feeding conditions and associated with the lipogenic pathway. In addition, TGF-β receptors are highly expressed in adipose tissue, and pharmacological inhibition of TGF-β1 reduced adipose tissue mass and caused ectopic lipid accumulation in the liver. This reduced fat mass was associated with decreased gene expression in ECM remodeling and lipogenesis. Furthermore, similar results were observed in the adipose tissue of SMAD family member 3 knockout mice or upon systemic TGF-β neutralization, with significant reductions in both ECM remodeling and lipogenesis-related genes. Mechanistically, we found that insulin-induced TGF-β1 and cell-autonomous action remodels the ECM of adipocytes, which controls the downstream focal adhesion kinase–AKT signaling cascades and enhances the lipogenic pathway. Of note, destruction of collagens or matrix metalloproteinase/a disintegrin and metalloprotease activities, critical components of ECM remodeling, blocked TGF-β1-mediated focal adhesion kinase–AKT signaling and the lipogenic pathway. Taken together, this study identifies a previously unknown lipogenic role of TGF-β1 by which adipocytes can expand to adapt to physiological feeding events.
Collapse
Affiliation(s)
- Shinichiro Toyoda
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jihoon Shin
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
45
|
Ebefors K, Bergwall L, Nyström J. The Glomerulus According to the Mesangium. Front Med (Lausanne) 2022; 8:740527. [PMID: 35155460 PMCID: PMC8825785 DOI: 10.3389/fmed.2021.740527] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
The glomerulus is the functional unit for filtration of blood and formation of primary urine. This intricate structure is composed of the endothelium with its glycocalyx facing the blood, the glomerular basement membrane and the podocytes facing the urinary space of Bowman's capsule. The mesangial cells are the central hub connecting and supporting all these structures. The components as a unit ensure a high permselectivity hindering large plasma proteins from passing into the urine while readily filtering water and small solutes. There has been a long-standing interest and discussion regarding the functional contribution of the different cellular components but the mesangial cells have been somewhat overlooked in this context. The mesangium is situated in close proximity to all other cellular components of the glomerulus and should be considered important in pathophysiological events leading to glomerular disease. This review will highlight the role of the mesangium in both glomerular function and intra-glomerular crosstalk. It also aims to explain the role of the mesangium as a central component involved in disease onset and progression as well as signaling to maintain the functions of other glomerular cells to uphold permselectivity and glomerular health.
Collapse
Affiliation(s)
- Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Bergwall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
The Bright and the Dark Side of TGF-β Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14040940. [PMID: 35205692 PMCID: PMC8870127 DOI: 10.3390/cancers14040940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Transforming growth factor β (TGF-β) signaling is a preeminent regulator of diverse cellular and physiological processes. Frequent dysregulation of TGF-β signaling has been implicated in cancer. In hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, the autocrine and paracrine effects of TGF-β have paradoxical implications. While acting as a potent tumor suppressor pathway in the early stages of malignancy, TGF-β diverts to a promoter of tumor progression in the late stages, reflecting its bright and dark natures, respectively. Within this context, targeting TGF-β represents a promising therapeutic option for HCC treatment. We discuss here the molecular properties of TGF-β signaling in HCC, attempting to provide an overview of its effects on tumor cells and the stroma. We also seek to evaluate the dysregulation mechanisms that mediate the functional switch of TGF-β from a tumor suppressor to a pro-tumorigenic signal. Finally, we reconcile its biphasic nature with the therapeutic implications. Abstract Hepatocellular carcinoma (HCC) is associated with genetic and nongenetic aberrations that impact multiple genes and pathways, including the frequently dysregulated transforming growth factor β (TGF-β) signaling pathway. The regulatory cytokine TGF-β and its signaling effectors govern a broad spectrum of spatiotemporally regulated molecular and cellular responses, yet paradoxically have dual and opposing roles in HCC progression. In the early stages of tumorigenesis, TGF-β signaling enforces profound tumor-suppressive effects, primarily by inducing cell cycle arrest, cellular senescence, autophagy, and apoptosis. However, as the tumor advances in malignant progression, TGF-β functionally switches to a pro-tumorigenic signal, eliciting aggressive tumor traits, such as epithelial–mesenchymal transition, tumor microenvironment remodeling, and immune evasion of cancer cells. On this account, the inhibition of TGF-β signaling is recognized as a promising therapeutic strategy for advanced HCC. In this review, we evaluate the functions and mechanisms of TGF-β signaling and relate its complex and pleiotropic biology to HCC pathophysiology, attempting to provide a detailed perspective on the molecular determinants underlying its functional diversion. We also address the therapeutic implications of the dichotomous nature of TGF-β signaling and highlight the rationale for targeting this pathway for HCC treatment, alone or in combination with other agents.
Collapse
|
47
|
The Effect of TGF-β1 Reduced Functionality on the Expression of Selected Synaptic Proteins and Electrophysiological Parameters: Implications of Changes Observed in Acute Hepatic Encephalopathy. Int J Mol Sci 2022; 23:ijms23031081. [PMID: 35163004 PMCID: PMC8835518 DOI: 10.3390/ijms23031081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Decreased platelet count represents a feature of acute liver failure (ALF) pathogenesis. Platelets are the reservoir of transforming growth factor 1 (TGF-β1), a multipotent cytokine involved in the maintenance of, i.a., central nervous system homeostasis. Here, we analyzed the effect of a decrease in TGF-β1 active form on synaptic proteins levels, and brain electrophysiology, in mice after intraperitoneal (ip) administration of TGF-β1 antibody (anti-TGF-β1; 1 mg/mL). Next, we correlated it with a thrombocytopenia-induced TGF-β1 decrease, documented in an azoxymethane-induced (AOM; 100 mM ip) model of ALF, and clarified the impact of TGF-β1 decrease on blood–brain barrier functionality. The increase of both synaptophysin and synaptotagmin in the cytosolic fraction, and its reduction in a membrane fraction, were confirmed in the AOM mice brains. Both proteins’ decrease in analyzed fractions occurred in anti-TGF-β1 mice. In turn, an increase in postsynaptic (NR1 subunit of N-methyl-D-aspartate receptor, postsynaptic density protein 95, gephyrin) proteins in the AOM brain cortex, but a selective compensatory increase of NR1 subunit in anti-TGF-β mice, was observed. The alterations of synaptic proteins levels were not translated on electrophysiological parameters in the anti-TGF-β1 model. The results suggest the impairment of synaptic vesicles docking to the postsynaptic membrane in the AOM model. Nevertheless, changes in synaptic protein level in the anti-TGF-β1 mice do not affect neurotransmission and may not contribute to neurologic deficits in AOM mice.
Collapse
|
48
|
Rasouli M, Rahimi A, Soleimani M, keshel SH. The interplay between extracellular matrix and progenitor/stem cells during wound healing: Opportunities and future directions. Acta Histochem 2021; 123:151785. [PMID: 34500185 DOI: 10.1016/j.acthis.2021.151785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/31/2021] [Accepted: 08/27/2021] [Indexed: 01/11/2023]
Abstract
Skin wound healing, a dynamic physiological process, progresses through coordinated overlapping phases to restore skin integrity. In some pathological conditions such as diabetes, wounds become chronic and hard-to-heal resulting in substantial morbidity and healthcare costs. Despite much advancement in understanding mechanisms of wound healing, chronic and intractable wounds are still a considerable challenge to nations' health care systems. Extracellular matrix (ECM) components play pivotal roles in all phases of wound healing. Therefore, a better understanding of their roles during wound healing can help improve wound care approaches. The ECM provides a 3D structure and forms the stem cell niche to support stem cell adhesion and survival and to regulate stem cell behavior and fate. Also, this dynamic structure reserves growth factors, regulates their bioavailability and provides biological signals. In various diseases, the composition and stiffness of the ECM is altered, which as a result, disrupts bidirectional cell-ECM interactions and tissue regeneration. Hence, due to the impact of ECM changes on stem cell fate during wound healing and the possibility of exploring new strategies to treat chronic wounds through manipulation of these interactions, in this review, we will discuss the importance/impact of ECM in the regulation of stem cell function and behavior to find ideal wound repair and regeneration strategies. We will also shed light on the necessity of using ECM in future wound therapy and highlight the potential roles of various biomimetic and ECM-based scaffolds as functional ECM preparations to mimic the native stem cell niche.
Collapse
|
49
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
50
|
Kurmann L, Okoniewski M, Dubey RK. Transcryptomic Analysis of Human Brain -Microvascular Endothelial Cell Driven Changes in -Vascular Pericytes. Cells 2021; 10:cells10071784. [PMID: 34359953 PMCID: PMC8304094 DOI: 10.3390/cells10071784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Many pathological conditions of the brain are associated with structural abnormalities within the neurovascular system and linked to pericyte (PC) loss and/or dysfunction. Since crosstalk between endothelial cells (ECs) and PCs greatly impacts the function of the blood–brain barrier (BBB), effects of PCs on endothelial integrity and function have been investigated extensively. However, the impact of ECs on the function and activity of PCs remains largely unknown. Hence, using co-cultures of human brain vascular PCs with human cerebral microvascular ECs on opposite sides of porous Transwell inserts which facilitates direct EC–PC contact and improves EC barrier function, we analyzed EC-driven transcriptomic changes in PCs using microarrays and changes in cytokines/chemokines using proteome arrays. Gene expression analysis (GEA) in PCs co-cultured with ECs versus PCs cultured alone showed significant upregulation of 1′334 genes and downregulation of 964 genes. GEA in co-cultured PCs revealed increased expression of five prominent PC markers as well as soluble factors, such as transforming growth factor beta, fibroblast growth factor, angiopoietin 1, brain-derived neurotrophic factor, all of which are involved in EC–PC crosstalk and BBB induction. Pathway enrichment analysis of modulated genes showed a strong impact on many inflammatory and extracellular matrix (ECM) pathways including interferon and interleukin signaling, TGF-β and interleukin-1 regulation of ECM, as well as on the mRNA processing pathway. Interestingly, while co-culture induced the mRNA expression of many chemokines and cytokines, including several CCL- and CXC-motif ligands and interleukins, we observed a decreased expression of the same inflammatory mediators on the protein level. Importantly, in PCs, ECs significantly induced interferon associated proteins (IFIT1, IFI44L, IF127, IFIT3, IFI6, IFI44) with anti-viral actions; downregulated prostaglandin E receptor 2 (prevent COX-2 mediated BBB damage); upregulated fibulin-3 and connective tissue growth factor essential for BBB integrity; and multiple ECMs (collagens and integrins) that inhibit cell migration. Our findings suggest that via direct contact, ECs prime PCs to induce molecules to promote BBB integrity and cell survival during infection and inflammatory insult. Taken together, we provide first evidence that interaction with ECs though porous membranes induces major changes in the transcriptomic and proteomic profile of PCs. ECs influence genes involved in diverse aspects of PC function including PC maturation, cell survival, anti-viral defense, blood flow regulation, immuno-modulation and ECM deposition.
Collapse
Affiliation(s)
- Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
| | | | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|