1
|
Sang L, Ding L, Hao K, Zhang C, Shen X, Sun H, Fu D, Qi X. LncRNA MSTRG.22719.16 mediates the reduction of enoxaparin sodium high-viscosity bone cement-induced thrombosis by targeting the ocu-miR-326-5p/CD40 axis. J Orthop Surg Res 2023; 18:716. [PMID: 37736740 PMCID: PMC10514947 DOI: 10.1186/s13018-023-04109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Polymethylmethacrylate (PMMA) bone cement promotes the development of local thrombi. Our study found that a novel material, ES-PMMA bone cement, can reduce local thrombosis. We used a simple and reproducible animal model to confirm the reduction in local thrombosis and explored the associated molecular mechanism. METHODS New Zealand rabbits, which were used to model thrombosis using extracorporeal carotid artery shunts, were divided into the following two groups, with 3 rabbits in each group: the PMMA bone cement group and the ES-PMMA bone cement group. Four hours after modelling, experimental samples, including thrombotic and vascular tissues, were collected. Thrombotic samples from the PMMA group and ES-PMMA group were subjected to lncRNA sequencing, and a lncRNA microarray was used to screen the differentially expressed lncRNAs. The expression of thrombomodulin in endothelial cells was quantified in vascular tissue samples. Differences in the lncRNA expression profiles between the thrombotic samples of the PMMA group and ES-PMMA group were assessed by base-to-base alignment in the intergenic regions of genomes. The lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was established in light of ceRNA theory. Thrombosis was observed in the PMMA group and ES-PMMA group. RESULTS The thrombotic weight was 0.00706 ± 0.00136 g/cm in the PMMA group and 0.00551 ± 0.00115 g/cm in the ES-PMMA group. Quantitative real-time polymerase chain reaction (RT-q-CR) and Western blotting revealed that the expression of CD40, which can regulate thrombosis in vascular endothelial cells, was significantly lower in the ES-PMMA group than in the PMMA group. High-throughput sequencing was used to identify 111 lncRNAs with lower expression in the ES-PMMA group than in the PMMA group. Through bioinformatics investigation, lncRNA MSTRG22719.16/ocu-miR-326-5p/CD40 binding sites were selected. Fluorescent in situ RNA hybridization (FISH) was performed to verify the lower expression of lncRNA MSTRG.22719.16 in vascular tissues from the ES-PMMA group. A dual-luciferase reporter gene assay was applied to verify that ocu-miR-326-5p binds the CD40 3'-UTR and targets lncRNA MSTRG.22719.16. CONCLUSION Compared with PMMA bone cement, ES-PMMA bone cement can reduce thrombosis through the lncRNA MSTRG.22719.16/ocu-miR-326-5p/CD40 axis.
Collapse
Affiliation(s)
- Linchao Sang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Luobin Ding
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kangning Hao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ce Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Sun
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Dehao Fu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 People’s Republic of China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Wang HL, Ruan DD, Wu M, Ji YY, Hu XX, Wu QY, Zhang YP, Lin B, Hu YN, Wang H, Tang Y, Fang ZT, Luo JW, Liao LS, Gao MZ. Identification and characterization of two SERPINC1 mutations causing congenital antithrombin deficiency. Thromb J 2023; 21:3. [PMID: 36624481 PMCID: PMC9830717 DOI: 10.1186/s12959-022-00443-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Antithrombin (AT) is the main physiological anticoagulant involved in hemostasis. Hereditary AT deficiency is a rare autosomal dominant thrombotic disease mainly caused by mutations in SERPINC1, which was usually manifested as venous thrombosis and pulmonary embolism. In this study, we analyzed the clinical characteristics and screened for mutant genes in two pedigrees with hereditary AT deficiency, and the functional effects of the pathogenic mutations were evaluated. METHODS Candidate gene variants were analyzed by next-generation sequencing to screen pathogenic mutations in probands, followed by segregation analysis in families by Sanger sequencing. Mutant and wild-type plasmids were constructed and transfected into HEK293T cells to observe protein expression and cellular localization of SERPINC1. The structure and function of the mutations were analyzed by bioinformatic analyses. RESULTS The proband of pedigree A with AT deficiency carried a heterozygous frameshift mutation c.1377delC (p.Asn460Thrfs*20) in SERPINC1 (NM000488.3), a 1377C base deletion in exon 7 resulting in a backward shift of the open reading frame, with termination after translation of 20 residues, and a different residue sequence translated after the frameshift. Bioinformatics analysis suggests that the missing amino acid sequence caused by the frameshift mutation might disrupt the disulfide bond between Cys279 and Cys462 and affect the structural function of the protein. This newly discovered variant is not currently included in the ClinVar and HGMD databases. p.Arg229* resulted in a premature stop codon in exon 4, and bioinformatics analysis suggests that the truncated protein structure lost its domain of interaction with factor IX (Ala414 site) after the deletion of nonsense mutations. However, considering the AT truncation protein resulting from the p.Arg229* variant loss a great proportion of the molecule, we speculate the variant may affect two functional domains HBS and RCL and lack of the corresponding function. The thrombophilia and decreased-AT-activity phenotypes of the two pedigrees were separated from their genetic variants. After lentiviral plasmid transfection into HEK293T cells, the expression level of AT protein decreased in the constructed c.1377delC mutant cells compared to that in the wild-type, which was not only reduced in c.685C > T mutant cells but also showed a significant band at 35 kDa, suggesting a truncated protein. Immunofluorescence localization showed no significant differences in protein localization before and after the mutation. CONCLUSIONS The p.Asn460Thrfs*20 and p.Arg229* variants of SERPINC1 were responsible for the two hereditary AT deficiency pedigrees, which led to AT deficiency by different mechanisms. The p.Asn460Thrfs*20 variant is reported for the first time.
Collapse
Affiliation(s)
- Han-lu Wang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Dan-dan Ruan
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Min Wu
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Yuan-yuan Ji
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Xing-xing Hu
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Cardiovascular Medicine, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Qiu-yan Wu
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Yan-ping Zhang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Bin Lin
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Ya-nan Hu
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Hang Wang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Cardiovascular Surgery, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Yi Tang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Interventional Radiology, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Zhu-ting Fang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Interventional Radiology, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Jie-wei Luo
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Li-sheng Liao
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Hematology, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Mei-zhu Gao
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Nephrology, Fujian Provincial Hospital, Fuzhou, 350001 China
| |
Collapse
|
3
|
Xu Z, Yan Y, Cao J, Zhou Y, Zhang H, Xu Q, Zhou J. A family of serine protease inhibitors (serpins) and its expression profiles in the ovaries of Rhipicephalus haemaphysaloides. INFECTION GENETICS AND EVOLUTION 2020; 84:104346. [PMID: 32360539 DOI: 10.1016/j.meegid.2020.104346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022]
Abstract
Serpins are evolutionarily conserved serine protease inhibitors found in many organisms. In arthropods, serpins are involved in feeding, development, oviposition, anti-coagulation and innate immune responses. We characterized of 11 serpins in the tick Rhipicephalus haemaphysaloides. These serpins have orthologous genes in other ticks, as indicated by phylogenetic analysis. Analysis of the reactive center loop and hinge regions of the protein sequences indicated that RHS7 encodes proteins that may lack proteinase inhibitor activity. All R. haemaphysaloides serpins had high amino acid sequence identities to Rhipicephalus microplus serpins. Tissue and temporal transcriptional profiling of eight R. haemaphysaloides serpins located in the ovaries demonstrated that they are transcribed during feeding and oviposition. These suggested their participation in the regulation of tick physiology. Immune serum from rabbits repeatedly infested with larvae, nymphs and adults of R. haemaphysaloides can recognize multiple recombinant serpins, respectively. After gene silencing, the blood feeding to repletion time was significantly longer and the 24 h attachment rate was significantly lower in the RHS3 and RHS7 knock down groups. The RHS9 and RHS11 silenced ticks had significant reduction in repletion time and egg-laying rate. Egg hatchability was significantly decreased in RHS4, RHS5 and RHS9 silenced ticks. All groups had significant reductions in engorged body weight. This study increases information on the serpins of R. haemaphysaloides and suggests that some RHSs are potential targets for development of tick vaccines.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yijie Yan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
4
|
Wu YM, Zhai YD, Zhou YT, Tang SM, Li XY, Jia LF, Meng XB, Zhang H, Sun GB, Sun XB. Protection of Shuxuetong combined with aspirin against cerebral ischemia/reperfusion injury through ameliorating coagulation and fibrinolysis system. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
5
|
Abstract
The prothrombinase complex, composed of the protease factor (f)Xa and cofactor fVa, efficiently converts prothrombin to thrombin by specific sequential cleavage at 2 sites. How the complex assembles and its mechanism of prothrombin processing are of central importance to human health and disease, because insufficient thrombin generation is the root cause of hemophilia, and excessive thrombin production results in thrombosis. Efforts to determine the crystal structure of the prothrombinase complex have been thwarted by the dependence of complex formation on phospholipid membrane association. Pseutarin C is an intrinsically stable prothrombinase complex preassembled in the venom gland of the Australian Eastern Brown Snake (Pseudonaja textilis). Here we report the crystal structures of the fX-fV complex and of activated fXa from P textilis venom and the derived model of active pseutarin C. Structural analysis supports a single substrate binding channel on fVa, to which prothrombin and the intermediate meizothrombin bind in 2 different orientations, providing insight into the architecture and mechanism of the prothrombinase complex-the molecular engine of blood coagulation.
Collapse
|