1
|
Elkholy MM, Fahmi MW, El-Haggar SM. Dynamic changes in the levels of sCD62L and SPARC in chronic myeloid leukaemia patients during imatinib treatment. J Clin Pharm Ther 2022; 47:2115-2129. [PMID: 36053969 DOI: 10.1111/jcpt.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Chronic myeloid leukaemia (CML) microenvironment is responsible for resistance of leukaemic cells to tyrosine kinase inhibitor, altered adhesion, increased proliferation and leukaemic cells growth and survival through the secretion of many soluble molecules. We aimed at monitoring soluble L-selectin (sCD62L) and secreted protein acidic and rich in cysteine (SPARC) levels in chronic phase chronic myeloid leukaemia (CP-CML) patients and assessing the impact of imatinib on these parameters. METHODS This prospective controlled clinical trial enrolled 35 subjects classified into two groups: control group included 10 healthy volunteers and CP-CML patients group included 25 newly diagnosed CP-CML patients received imatinib 400 mg once daily. sCD62L plasma levels, SPARC serum levels, breakpoint cluster region-Abelson1 (BCR-ABL1) %, complete blood count with differential, liver and kidney functions parameters were assessed at baseline and after 3 and 6 months of treatment. RESULTS AND DISCUSSION At baseline, sCD62L and SPARC were significantly elevated in CP-CML patients (p < 0.05) compared to control group. After 3 months of treatment, sCD62L was non-significantly decreased (p > 0.05), while surprisingly SPARC was significantly increased (p < 0.05) compared to baseline. Moreover, after 6 months of treatment, sCD62L was significantly decreased (p < 0.05) and SPARC was non-significantly decreased (p > 0.05) compared to baseline. In addition, sCD62L was significantly correlated with WBCs and neutrophils counts, while SPARC was significantly correlated with lymphocytes count at baseline and after 3 and 6 months of imatinib treatment. WHAT IS NEW AND CONCLUSION The elevated levels of sCD62L and SPARC at diagnosis in CP-CML patients could reflect their roles in CML pathogenesis and the dynamic changes in their levels during imatinib therapy might suppose additional mechanisms of action of imatinib beside inhibition of BCR-ABL. Furthermore, imatinib showed a significant impact on sCD62L and SPARC levels during treatment period.
Collapse
Affiliation(s)
- Mahmoud Mohamed Elkholy
- Clinical Pharmacy Department, Faculty of Pharmacy, Al Salam University in Egypt, Kafr El-Zayat, Egypt
| | - Maryan Waheeb Fahmi
- Medical Oncology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
2
|
Torres-Barrera P, Moreno-Lorenzana D, Alvarado-Moreno JA, García-Ruiz E, Lagunas C, Mayani H, Chávez-González A. Cell Contact with Endothelial Cells Favors the In Vitro Maintenance of Human Chronic Myeloid Leukemia Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms231810326. [PMID: 36142235 PMCID: PMC9499491 DOI: 10.3390/ijms231810326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/30/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) originates in a leukemic stem cell that resides in the bone marrow microenvironment, where they coexist with cellular and non-cellular elements. The vascular microenvironment has been identified as an important element in CML development since an increase in the vascularization has been suggested to be related with poor prognosis; also, using murine models, it has been reported that bone marrow endothelium can regulate the quiescence and proliferation of leukemic stem and progenitor cells. This observation, however, has not been evaluated in primary human cells. In this report, we used a co-culture of primitive (progenitor and stem) CML cells with endothelial colony forming cells (ECFC) as an in vitro model to evaluate the effects of the vascular microenvironment in the leukemic hematopoiesis. Our results show that this interaction allows the in vitro maintenance of primitive CML cells through an inflammatory microenvironment able to regulate the proliferation of progenitor cells and the permanence in a quiescent state of leukemic stem cells.
Collapse
Affiliation(s)
- Patricia Torres-Barrera
- Laboratorio de Células Troncales Leucémicas, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN Siglo XXI, Instituto Mexicano del Seguro Social, CDMX 06725, Mexico
- Posgrado en Ciencias Biológicas, UNAM, CDMX 04510, Mexico
| | | | - José Antonio Alvarado-Moreno
- Unidad de Investigación Médica en Trombosis Hemostasia y Aterogenesis, Instituto Mexicano del Seguro Social, CDMX 03100, Mexico
| | - Elena García-Ruiz
- Departamento de Hematología, Hospital de Especialidades, CMN La Raza, Instituto Mexicano del Seguro Social, CDMX 02990, Mexico
| | - Cesar Lagunas
- Departamento de Cirugías de Cadera, Hospital General “Villa Coapa” Instituto Mexicano del Seguro Social, CDMX 14310, Mexico
| | - Hector Mayani
- Laboratorio de Células Troncales Hematopoyéticas, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN Siglo XXI, Instituto Mexicano del Seguro Social, CDMX 06725, Mexico
| | - Antonieta Chávez-González
- Laboratorio de Células Troncales Leucémicas, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN Siglo XXI, Instituto Mexicano del Seguro Social, CDMX 06725, Mexico
- Correspondence:
| |
Collapse
|
3
|
Chen SH, Hsieh YY, Tzeng HE, Lin CY, Hsu KW, Chiang YS, Lin SM, Su MJ, Hsieh WS, Lee CH. ABL Genomic Editing Sufficiently Abolishes Oncogenesis of Human Chronic Myeloid Leukemia Cells In Vitro and In Vivo. Cancers (Basel) 2020; 12:E1399. [PMID: 32485885 PMCID: PMC7352505 DOI: 10.3390/cancers12061399] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is the most common type of leukemia in adults, and more than 90% of CML patients harbor the abnormal Philadelphia chromosome (Ph) that encodes the BCR-ABL oncoprotein. Although the ABL kinase inhibitor (imatinib) has proven to be very effective in achieving high remission rates and improving prognosis, up to 33% of CML patients still cannot achieve an optimal response. Here, we used CRISPR/Cas9 to specifically target the BCR-ABL junction region in K562 cells, resulting in the inhibition of cancer cell growth and oncogenesis. Due to the variety of BCR-ABL junctions in CML patients, we utilized gene editing of the human ABL gene for clinical applications. Using the ABL gene-edited virus in K562 cells, we detected 41.2% indels in ABL sgRNA_2-infected cells. The ABL-edited cells reveled significant suppression of BCR-ABL protein expression and downstream signals, inhibiting cell growth and increasing cell apoptosis. Next, we introduced the ABL gene-edited virus into a systemic K562 leukemia xenograft mouse model, and bioluminescence imaging of the mice showed a significant reduction in the leukemia cell population in ABL-targeted mice, compared to the scramble sgRNA virus-injected mice. In CML cells from clinical samples, infection with the ABL gene-edited virus resulted in more than 30.9% indels and significant cancer cell death. Notably, no off-target effects or bone marrow cell suppression was found using the ABL gene-edited virus, ensuring both user safety and treatment efficacy. This study demonstrated the critical role of the ABL gene in maintaining CML cell survival and tumorigenicity in vitro and in vivo. ABL gene editing-based therapy might provide a potential strategy for imatinib-insensitive or resistant CML patients.
Collapse
Affiliation(s)
- Shu-Huey Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Huey-En Tzeng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Division of Hematology/Oncology, Department of Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu 30068, Taiwan
| | - Kai-Wen Hsu
- Institute of New Drug Development, China Medical University, Taichung City 40402, Taiwan;
- Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Yun-Shan Chiang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Su-Mei Lin
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan;
| | - Ming-Jang Su
- Department of Clinical Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Wen-Shyang Hsieh
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei 11031, Taiwan
| |
Collapse
|
4
|
ABL Genomic Editing Sufficiently Abolishes Oncogenesis of Human Chronic Myeloid Leukemia Cells In Vitro and In Vivo. Cancers (Basel) 2020. [PMID: 32485885 DOI: 10.3390/cancers12061399.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is the most common type of leukemia in adults, and more than 90% of CML patients harbor the abnormal Philadelphia chromosome (Ph) that encodes the BCR-ABL oncoprotein. Although the ABL kinase inhibitor (imatinib) has proven to be very effective in achieving high remission rates and improving prognosis, up to 33% of CML patients still cannot achieve an optimal response. Here, we used CRISPR/Cas9 to specifically target the BCR-ABL junction region in K562 cells, resulting in the inhibition of cancer cell growth and oncogenesis. Due to the variety of BCR-ABL junctions in CML patients, we utilized gene editing of the human ABL gene for clinical applications. Using the ABL gene-edited virus in K562 cells, we detected 41.2% indels in ABL sgRNA_2-infected cells. The ABL-edited cells reveled significant suppression of BCR-ABL protein expression and downstream signals, inhibiting cell growth and increasing cell apoptosis. Next, we introduced the ABL gene-edited virus into a systemic K562 leukemia xenograft mouse model, and bioluminescence imaging of the mice showed a significant reduction in the leukemia cell population in ABL-targeted mice, compared to the scramble sgRNA virus-injected mice. In CML cells from clinical samples, infection with the ABL gene-edited virus resulted in more than 30.9% indels and significant cancer cell death. Notably, no off-target effects or bone marrow cell suppression was found using the ABL gene-edited virus, ensuring both user safety and treatment efficacy. This study demonstrated the critical role of the ABL gene in maintaining CML cell survival and tumorigenicity in vitro and in vivo. ABL gene editing-based therapy might provide a potential strategy for imatinib-insensitive or resistant CML patients.
Collapse
|
5
|
Carrà G, Cartellà A, Maffeo B, Morotti A. Strategies For Targeting Chronic Myeloid Leukaemia Stem Cells. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2019; 9:45-52. [PMID: 31807112 PMCID: PMC6842740 DOI: 10.2147/blctt.s228815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Chronic Myeloid Leukaemia is a myeloproliferative disorder driven by the t(9;22) chromosomal translocation coding for the chimeric protein BCR-ABL. CML treatment represents the paradigm of molecular therapy of cancer. Since the development of the tyrosine kinase inhibitor of the BCR-ABL kinase, the clinical approach to CML has dramatically changed, with a stunning improvement in the quality of life and response rates of patients. However, it remains clear that tyrosine kinase inhibitors (TKIs) are unable to target the most immature cellular component of CML, the CML stem cell. This review summarizes new insights into the mechanisms of resistance to TKIs.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| | - Antonio Cartellà
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| | - Beatrice Maffeo
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| | - Alessandro Morotti
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| |
Collapse
|
6
|
Cackowski FC, Taichman RS. Parallels between hematopoietic stem cell and prostate cancer disseminated tumor cell regulation. Bone 2019; 119:82-86. [PMID: 29496517 PMCID: PMC6109615 DOI: 10.1016/j.bone.2018.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
Abstract
The bone marrow is the primary site of hematopoiesis and the home for hematopoietic stem cells (HSCs) in adult mammals. Prostate cancer commonly metastasizes to the bone and forms bone metastases in almost all patients who die of the disease. Prostate cancer bone metastases are thought to develop after rare bone marrow disseminated tumor cells (DTCs) escape a dormant state and reactivate. Prostate cancer DTCs and normal HSCs have been shown to compete for residence in the bone marrow and share many of same regulatory mechanisms for survival, proliferation and homing. In this review, we highlight these parallels in order to help our readers use the literature in HSC and DTC biology to inform their research and generate hypotheses in both fields.
Collapse
Affiliation(s)
- Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Medicine, Division of Hematology & Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Carrà G, Torti D, Crivellaro S, Panuzzo C, Taulli R, Cilloni D, Guerrasio A, Saglio G, Morotti A. The BCR-ABL/NF-κB signal transduction network: a long lasting relationship in Philadelphia positive Leukemias. Oncotarget 2018; 7:66287-66298. [PMID: 27563822 PMCID: PMC5323234 DOI: 10.18632/oncotarget.11507] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors plays a key role in cancer pathogenesis due to the ability to promote cellular proliferation and survival, to induce resistance to chemotherapy and to mediate invasion and metastasis. NF-κB is recruited through different mechanisms involving either canonical (RelA/p50) or non-canonical pathways (RelB/p50 or RelB/p52), which transduce the signals originated from growth-factors, cytokines, oncogenic stress and DNA damage, bacterial and viral products or other stimuli. The pharmacological inhibition of the NF-κB pathway has clearly been associated with significant clinical activity in different cancers. Almost 20 years ago, NF-κB was described as an essential modulator of BCR-ABL signaling in Chronic Myeloid Leukemia and Philadelphia-positive Acute Lymphoblastic Leukemia. This review summarizes the role of NF-κB in BCR-ABL-mediated leukemogenesis and provides new insights on the long lasting BCR-ABL/NF-κB connection.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
8
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
9
|
Perrotti D, Silvestri G, Stramucci L, Yu J, Trotta R. Cellular and Molecular Networks in Chronic Myeloid Leukemia: The Leukemic Stem, Progenitor and Stromal Cell Interplay. Curr Drug Targets 2017; 18:377-388. [PMID: 27307150 DOI: 10.2174/1389450117666160615074120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022]
Abstract
The use of imatinib, second and third generation ABL tyrosine kinase inhibitors (TKI) (i.e. dasatinib, nilotinib, bosutinib and ponatinib) made CML a clinically manageable and, in a small percentage of cases, a cured disease. TKI therapy also turned CML blastic transformation into a rare event; however, disease progression still occurs in those patients who are refractory, not compliant with TKI therapy or develop resistance to multiple TKIs. In the past few years, it became clear that the BCRABL1 oncogene does not operate alone to drive disease emergence, maintenance and progression. Indeed, it seems that bone marrow (BM) microenvironment-generated signals and cell autonomous BCRABL1 kinase-independent genetic and epigenetic alterations all contribute to: i. persistence of a quiescent leukemic stem cell (LSC) reservoir, ii. innate or acquired resistance to TKIs, and iii. progression into the fatal blast crisis stage. Herein, we review the intricate leukemic network in which aberrant, but finely tuned, survival, mitogenic and self-renewal signals are generated by leukemic progenitors, stromal cells, immune cells and metabolic microenvironmental conditions (e.g. hypoxia) to promote LSC maintenance and blastic transformation.
Collapse
Affiliation(s)
- Danilo Perrotti
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | |
Collapse
|
10
|
Flörcken A, Kopp J, Kölsch U, Meisel C, Dörken B, Pezzutto A, Westermann J. DC generation from peripheral blood mononuclear cells in patients with chronic myeloid leukemia: Influence of interferons on DC yield and functional properties. Hum Vaccin Immunother 2016; 12:1117-23. [PMID: 26864050 DOI: 10.1080/21645515.2015.1132965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
In Chronic Myeloid Leukemia (CML), standard treatment consists of modern tyrosine-kinase inhibitors (TKI). Nevertheless, there is evidence that immune responses against leukemia-associated antigens (LAA) may play an important role in disease control. Dendritic cell (DC)- based immunotherapy is able to induce T cell responses against LAA and might therefore pose an interesting therapeutic option in CML, especially in the setting of minimal residual disease (MRD). GMP production of DC for clinical vaccination remains a time- and cost- intensive procedure and standardized DC generation is warranted. We asked whether maturation-induction with IFN-γ and IFN-α has an influence on functional properties of DC derived from peripheral blood mononuclear cells (PBMC) in CML patients. Monocyte-derived DC from healthy donors and from patients with CML were analyzed after maturation-induction with our TNF-α-containing standard cytokine cocktail with or without addition of IFN-α and/or IFN-γ. Our results confirm that the addition of IFN-γ leads to enhanced IL-12 secretion in healthy donors. In contrast, in CML patients, IFN-γ was not able to increase IL-12 secretion, possibly due to a higher degree of cell adherence and lower cell yield during the cell culture. Our data suggest, that- in contrast to healthy donors-, additional interferons are not beneficial for maturation induction during large-scale DC production in patients with CML.
Collapse
Affiliation(s)
- Anne Flörcken
- a Department of Hematology , Oncology, and Tumor Immunology, Charité- University Medicine, Campus-Virchow-Klinikum , Berlin , Germany.,b Labor Berlin Charité Vivantes GmbH , Berlin , Germany
| | - Joachim Kopp
- c Experimental and Clinical Research Center (ECRC), Charité- University Medicine, Campus Berlin-Buch , Berlin , Germany
| | - Uwe Kölsch
- b Labor Berlin Charité Vivantes GmbH , Berlin , Germany
| | - Christian Meisel
- b Labor Berlin Charité Vivantes GmbH , Berlin , Germany.,d Institute of Immunology, Charité- University Medicine, Campus Virchow-Klinikum , Berlin , Germany
| | - Bernd Dörken
- a Department of Hematology , Oncology, and Tumor Immunology, Charité- University Medicine, Campus-Virchow-Klinikum , Berlin , Germany.,b Labor Berlin Charité Vivantes GmbH , Berlin , Germany
| | - Antonio Pezzutto
- e Department of Hematology , Oncology, and Tumor Immunology, Charité- University Medicine Berlin, Campus Benjamin Franklin , Berlin , Germany
| | - Jörg Westermann
- a Department of Hematology , Oncology, and Tumor Immunology, Charité- University Medicine, Campus-Virchow-Klinikum , Berlin , Germany.,b Labor Berlin Charité Vivantes GmbH , Berlin , Germany
| |
Collapse
|
11
|
Vivar R, Humeres C, Muñoz C, Boza P, Bolivar S, Tapia F, Lavandero S, Chiong M, Diaz-Araya G. FoxO1 mediates TGF-beta1-dependent cardiac myofibroblast differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:128-38. [DOI: 10.1016/j.bbamcr.2015.10.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
12
|
Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms. Mediators Inflamm 2015; 2015:869242. [PMID: 26543328 PMCID: PMC4620237 DOI: 10.1155/2015/869242] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
The term myeloproliferative neoplasms (MPN) refers to a heterogeneous group of diseases including not only polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), but also chronic myeloid leukemia (CML), and systemic mastocytosis (SM). Despite the clinical and biological differences between these diseases, common pathophysiological mechanisms have been identified in MPN. First, aberrant tyrosine kinase signaling due to somatic mutations in certain driver genes is common to these MPN. Second, alterations of the bone marrow microenvironment are found in all MPN types and have been implicated in the pathogenesis of the diseases. Finally, elevated levels of proinflammatory and microenvironment-regulating cytokines are commonly found in all MPN-variants. In this paper, we review the effects of MPN-related oncogenes on cytokine expression and release and describe common as well as distinct pathogenetic mechanisms underlying microenvironmental changes in various MPN. Furthermore, targeting of the microenvironment in MPN is discussed. Such novel therapies may enhance the efficacy and may overcome resistance to established tyrosine kinase inhibitor treatment in these patients. Nevertheless, additional basic studies on the complex interplay of neoplastic and stromal cells are required in order to optimize targeting strategies and to translate these concepts into clinical application.
Collapse
|
13
|
Arock M, Mahon FX, Valent P. Characterization and targeting of neoplastic stem cells in Ph + chronic myeloid leukemia. Int J Hematol Oncol 2015. [DOI: 10.2217/ijh.15.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the presence of an oncogenic fusion gene, BCR–ABL1. This fusion gene produces a cytoplasmic protein with tyrosine kinase activity that acts as a main driver of oncogenesis and abnormal proliferation of myeloid cells in CML. Targeted therapy with BCR–ABL1 tyrosine kinase inhibitors (TKIs) such as imatinib is followed by long-term responses in most patients. However, despite continuous treatment, relapses occur, suggesting the presence of TKI-resistant neoplastic stem cells in these patients. Here, we discuss potential mechanisms and signaling molecules involved in the prosurvival and self-renewal capacity of CML neoplastic stem cells as well as antigens expressed by these cells. Several of these signaling molecules and cell surface antigens may serve as potential targets of therapy and their use may overcome TKI resistance in CML in the future.
Collapse
Affiliation(s)
- Michel Arock
- Molecular & Cellular Oncology, LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - François-Xavier Mahon
- Laboratory of Hematology, CHU de Bordeaux, Bordeaux, France
- Laboratoire Hématopoïèse Leucémique et Cible Thérapeutique INSERM U1035, Université de Bordeaux, Bordeaux, France
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Raimondo S, Saieva L, Corrado C, Fontana S, Flugy A, Rizzo A, De Leo G, Alessandro R. Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism. Cell Commun Signal 2015; 13:8. [PMID: 25644060 PMCID: PMC4320527 DOI: 10.1186/s12964-015-0086-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/16/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder in which leukemic cells display a reciprocal t(9:22) chromosomal translocation that results in the formation of the chimeric BCR-ABL oncoprotein, with a constitutive tyrosine kinase activity. Consequently, BCR-ABL causes increased proliferation, inhibition of apoptosis, and altered adhesion of leukemic blasts to the bone marrow (BM) microenvironment. It has been well documented that cancer cells can generate their own signals in order to sustain their growth and survival, and recent studies have revealed the role of cancer-derived exosomes in activating signal transduction pathways involved in cancer cell proliferation. Exosomes are small vesicles of 40-100 nm in diameter that are initially formed within the endosomal compartment, and are secreted when a multivesicular body (MVB) fuses with the plasma membrane. These vesicles are released by many cell types including cancer cells, and are considered messengers in intercellular communication. We have previously shown that CML cells released exosomes able to affect the tumor microenvironment. RESULTS CML cells, exposed up to one week, to exosomes showed a dose-dependent increased proliferation compared with controls. Moreover, exosome treatment promotes the formation of LAMA84 colonies in methylcellulose. In a CML xenograft model, treatment of mice with exosomes caused a greater increase in tumor size compared with controls (PBS-treated mice). Real time PCR and Western Blot analysis showed, in both in vitro and in vivo samples, an increase in mRNA and protein levels of anti-apoptotic molecules, such as BCL-w, BCL-xl, and survivin, and a reduction of the pro-apoptotic molecules BAD, BAX and PUMA. We also found that TGF- β1 was enriched in CML-exosomes. Our investigations showed that exosome-stimulated proliferation of leukemia cells, as well as the exosome-mediated activation of an anti-apoptotic phenotype, can be inhibited by blocking TGF-β1 signaling. CONCLUSIONS CML-derived exosomes promote, through an autocrine mechanism, the proliferation and survival of tumor cells, both in vitro and in vivo, by activating anti-apoptotic pathways. We propose that this mechanism is activated by a ligand-receptor interaction between TGF-β1, found in CML-derived exosomes, and the TGF- β1 receptor in CML cells.
Collapse
Affiliation(s)
- Stefania Raimondo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli studi di Palermo, sezione di Biologia e Genetica, Via Divisi 83, 90100, Palermo, Italy.
| | - Laura Saieva
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli studi di Palermo, sezione di Biologia e Genetica, Via Divisi 83, 90100, Palermo, Italy.
| | - Chiara Corrado
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli studi di Palermo, sezione di Biologia e Genetica, Via Divisi 83, 90100, Palermo, Italy.
| | - Simona Fontana
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli studi di Palermo, sezione di Biologia e Genetica, Via Divisi 83, 90100, Palermo, Italy.
| | - Anna Flugy
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli studi di Palermo, sezione di Biologia e Genetica, Via Divisi 83, 90100, Palermo, Italy.
| | - Aroldo Rizzo
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia- Cervello, Anatomia Patologica, Palermo, Italy.
| | - Giacomo De Leo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli studi di Palermo, sezione di Biologia e Genetica, Via Divisi 83, 90100, Palermo, Italy.
| | - Riccardo Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli studi di Palermo, sezione di Biologia e Genetica, Via Divisi 83, 90100, Palermo, Italy.
| |
Collapse
|
15
|
SNP selection in genome-wide association studies via penalized support vector machine with MAX test. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:340678. [PMID: 24174989 PMCID: PMC3794570 DOI: 10.1155/2013/340678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 11/30/2022]
Abstract
One of main objectives of a genome-wide association study (GWAS) is to develop a prediction model for a binary clinical outcome using single-nucleotide polymorphisms (SNPs) which can
be used for diagnostic and prognostic purposes and for better understanding of the relationship between the disease and SNPs. Penalized support vector machine (SVM) methods have been widely used toward this end. However, since investigators often ignore the genetic models of SNPs, a final model results in a loss of efficiency in prediction of the clinical outcome. In order to overcome this problem, we propose a two-stage method such that the the genetic models of each SNP are identified using the MAX test and then a prediction model is fitted using a penalized SVM method. We apply the proposed method to various penalized SVMs and compare the performance of
SVMs using various penalty functions. The results from simulations and real GWAS data analysis show that the proposed method performs better than the prediction methods ignoring the genetic models in terms of prediction power and selectivity.
Collapse
|