1
|
Tachibana K, Ishimoto K, Takahashi R, Kadono H, Awaji T, Yuzuriha T, Tanaka T, Hamakubo T, Sakai J, Kodama T, Aoki S, Doi T. Development of a Ligand Screening Tool Using Full-Length Human Peroxisome Proliferator-Activated Receptor-Expressing Cell Lines to Ameliorate Metabolic Syndrome. Chem Pharm Bull (Tokyo) 2019; 67:199-202. [PMID: 30827999 DOI: 10.1248/cpb.c18-00627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily and include three subtypes (PPARα, PPARδ, and PPARγ). They regulate gene expression in a ligand-dependent manner. PPARα plays an important role in lipid metabolism. PPARγ is involved in glucose metabolism and is a potential therapeutic target in Type 2 diabetes. PPARδ ligands are candidates for the treatment of metabolic disorders. Thus, the detection of PPAR ligands may facilitate the treatment of various diseases. In this study, to identify PPAR ligands, we engineered reporter cell lines that can be used to quantify PPARγ and PPARδ activity. We evaluated several known ligands using these reporter cell lines and confirmed that they are useful for PPAR ligand detection. Furthermore, we evaluated extracts of approximately 200 natural resources and found various extracts that enhance reporter gene activity. Finally, we identified a main alkaloid of the Evodia fruit, evodiamine, as a PPARγ activator using this screening tool. These results suggest that the established reporter cell lines may serve as a useful cell-based screening tool for finding PPAR ligands to ameliorate metabolic syndromes.
Collapse
Affiliation(s)
| | - Kenji Ishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Rika Takahashi
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hirokazu Kadono
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Takuya Awaji
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Toshiya Tanaka
- Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo
| | - Takao Hamakubo
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo
| | - Tatsuhiko Kodama
- Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo
| | - Shunji Aoki
- School of Pharmacy, Hyogo University of Health Sciences
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
2
|
Fraser RS, Arroyo LG, Meyer A, Lillie BN. Identification of genetic variation in equine collagenous lectins using targeted resequencing. Vet Immunol Immunopathol 2018; 202:153-163. [PMID: 30078590 DOI: 10.1016/j.vetimm.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/30/2022]
Abstract
Collagenous lectins are a family of soluble pattern recognition receptors that play an important role in innate immune resistance to infectious disease. Through recognition of carbohydrate motifs on the surface of pathogens, some collagenous lectins can activate the lectin pathway of complement, providing an effective means of host defense. Genetic polymorphisms in collagenous lectins have been shown in several species to predispose animals to a variety of infectious diseases. Infectious diseases are an important cause of morbidity in horses, however little is known regarding the role of equine collagenous lectins. Using a high-throughput, targeted re-sequencing approach, the relationship between genetic variation in equine collagenous lectin genes and susceptibility to disease was investigated. DNA was isolated from tissues obtained from horses submitted for post-mortem examination. Animals were divided into two populations, those with infectious or autoinflammatory diseases (n = 37) and those without (n = 52), and then subdivided by dominant pathological process for a total of 21 pools, each containing 4-5 horses. DNA was extracted from each horse and pooled in equimolar amounts, and the exons, introns, upstream (approximately 50 kb) and downstream (approximately 3 kb) regulatory regions for the 11 equine collagenous lectin genes and related MASP genes were targeted for re-sequencing. A custom target capture kit was used to prepare a sequencing library, which was sequenced on an Illumina MiSeq. After implementing quality control filters, 4559 variants were identified. Of these, 92 were present in the coding regions (43 missense, 1 nonsense, and 48 synonymous), 1414 in introns, 3029 in the upstream region, and 240 in the downstream region. In silico analysis of the missense short nucleotide variants identified 12 mutations with potential to disrupt collagenous lectin protein structure or function, 280 mutations located within predicted transcription factor binding sites, and 95 mutations located within predicted microRNA binding elements. Analysis of allelic association identified 113 mutations that segregated between the infectious/autoinflammatory and non-infectious populations. The variants discovered in this experiment represent potential genetic contributors to disease susceptibility of horses, and will serve as candidates for further population-level genotyping. This study contributes to the growing body of evidence that pooled, high-throughput sequencing is a viable strategy for cost-effective variant discovery.
Collapse
Affiliation(s)
- Russell S Fraser
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1E 2W1, Canada.
| | - Luis G Arroyo
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, N1E 2W1, Canada.
| | - Ann Meyer
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1E 2W1, Canada.
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1E 2W1, Canada.
| |
Collapse
|
3
|
Tachibana K, Yuzuriha T, Tabata R, Fukuda S, Maegawa T, Takahashi R, Tanimoto K, Tsujino H, Nunomura K, Lin B, Matsuura Y, Tanaka T, Hamakubo T, Sakai J, Kodama T, Kobayashi T, Ishimoto K, Miyachi H, Doi T. Discovery of peroxisome proliferator-activated receptor α (PPARα) activators with a ligand-screening system using a human PPARα-expressing cell line. J Biol Chem 2018; 293:10333-10343. [PMID: 29764933 DOI: 10.1074/jbc.ra118.002077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/04/2018] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator-responsive elements (PPREs) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of >12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia.
Collapse
Affiliation(s)
- Keisuke Tachibana
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871,
| | - Tomohiro Yuzuriha
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871.,the Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101
| | - Ryotaro Tabata
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Syohei Fukuda
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Takashi Maegawa
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Rika Takahashi
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Keiichi Tanimoto
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Hirofumi Tsujino
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Kazuto Nunomura
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Bangzhong Lin
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Yoshiharu Matsuura
- the Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871
| | | | - Takao Hamakubo
- the Department of Quantitative Biology and Medicine, and
| | - Juro Sakai
- the Division of Metabolic Medicine, Research Center for Advanced Science and Technology, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, and
| | | | - Tadayuki Kobayashi
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Kenji Ishimoto
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871
| | - Hiroyuki Miyachi
- the Lead Exploration Unit, Drug Discovery Initiative, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Takefumi Doi
- From the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871,
| |
Collapse
|
4
|
The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 2017; 136:75-84. [DOI: 10.1016/j.biochi.2016.12.019] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/24/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
|
5
|
Pietzner M, Engelmann B, Kacprowski T, Golchert J, Dirk AL, Hammer E, Iwen KA, Nauck M, Wallaschofski H, Führer D, Münte TF, Friedrich N, Völker U, Homuth G, Brabant G. Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model. BMC Med 2017; 15:6. [PMID: 28065164 PMCID: PMC5220622 DOI: 10.1186/s12916-016-0770-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Determinations of thyrotropin (TSH) and free thyroxine (FT4) represent the gold standard in evaluation of thyroid function. To screen for novel peripheral biomarkers of thyroid function and to characterize FT4-associated physiological signatures in human plasma we used an untargeted OMICS approach in a thyrotoxicosis model. METHODS A sample of 16 healthy young men were treated with levothyroxine for 8 weeks and plasma was sampled before the intake was started as well as at two points during treatment and after its completion, respectively. Mass spectrometry-derived metabolite and protein levels were related to FT4 serum concentrations using mixed-effect linear regression models in a robust setting. To compile a molecular signature discriminating between thyrotoxicosis and euthyroidism, a random forest was trained and validated in a two-stage cross-validation procedure. RESULTS Despite the absence of obvious clinical symptoms, mass spectrometry analyses detected 65 metabolites and 63 proteins exhibiting significant associations with serum FT4. A subset of 15 molecules allowed a robust and good prediction of thyroid hormone function (AUC = 0.86) without prior information on TSH or FT4. Main FT4-associated signatures indicated increased resting energy expenditure, augmented defense against systemic oxidative stress, decreased lipoprotein particle levels, and increased levels of complement system proteins and coagulation factors. Further association findings question the reliability of kidney function assessment under hyperthyroid conditions and suggest a link between hyperthyroidism and cardiovascular diseases via increased dimethylarginine levels. CONCLUSION Our results emphasize the power of untargeted OMICs approaches to detect novel pathways of thyroid hormone action. Furthermore, beyond TSH and FT4, we demonstrated the potential of such analyses to identify new molecular signatures for diagnosis and treatment of thyroid disorders. This study was registered at the German Clinical Trials Register (DRKS) [DRKS00011275] on the 16th of November 2016.
Collapse
Affiliation(s)
- Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Beatrice Engelmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - Tim Kacprowski
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - Anna-Luise Dirk
- Medical Clinic I, University of Lübeck, Experimental and Clinical Endocrinology, Ratzeburger Allee 160, Zentralklinikum (Haus 40), 23538 Lübeck, Germany
| | - Elke Hammer
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - K. Alexander Iwen
- Medical Clinic I, University of Lübeck, Experimental and Clinical Endocrinology, Ratzeburger Allee 160, Zentralklinikum (Haus 40), 23538 Lübeck, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Private Practice Endocrinology, Krämpferstraße 6, 99094 Erfurt, Germany
| | - Dagmar Führer
- Department of Endocrinology and Metabolism, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Thomas F. Münte
- Department of Neurology, University of Lübeck, Ratzeburger Allee 169, 23538 Lübeck, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Research Centre for Prevention and Health, Glostrup University Hospital, Nordre Ringvej 57, 2600 Glostrup, Denmark
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
- ZIK-FunGene (Zentrum für Innovationskompetenz - Funktionelle Genomforschung), Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
- ZIK-FunGene (Zentrum für Innovationskompetenz - Funktionelle Genomforschung), Greifswald, Germany
| | - Georg Brabant
- Medical Clinic I, University of Lübeck, Experimental and Clinical Endocrinology, Ratzeburger Allee 160, Zentralklinikum (Haus 40), 23538 Lübeck, Germany
| |
Collapse
|
6
|
Integrated physiology and systems biology of PPARα. Mol Metab 2014; 3:354-71. [PMID: 24944896 PMCID: PMC4060217 DOI: 10.1016/j.molmet.2014.02.002] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 12/23/2022] Open
Abstract
The Peroxisome Proliferator Activated Receptor alpha (PPARα) is a transcription factor that plays a major role in metabolic regulation. This review addresses the functional role of PPARα in intermediary metabolism and provides a detailed overview of metabolic genes targeted by PPARα, with a focus on liver. A distinction is made between the impact of PPARα on metabolism upon physiological, pharmacological, and nutritional activation. Low and high throughput gene expression analyses have allowed the creation of a comprehensive map illustrating the role of PPARα as master regulator of lipid metabolism via regulation of numerous genes. The map puts PPARα at the center of a regulatory hub impacting fatty acid uptake, fatty acid activation, intracellular fatty acid binding, mitochondrial and peroxisomal fatty acid oxidation, ketogenesis, triglyceride turnover, lipid droplet biology, gluconeogenesis, and bile synthesis/secretion. In addition, PPARα governs the expression of several secreted proteins that exert local and endocrine functions.
Collapse
|