1
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Zhang H, Yang H, Wei W, Zhao J, Vijayalakshmi A, Wang M. Ethacridine Regulation of JAK/STAT/ERK Signaling Pathway in Colon Cancer Cells SW620: In Vitro Approach. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Background Ethacridine have anticancer effects by inhibiting regulatory transcription factors and cell viability in various cancer cells. To investigate the effect of ethacridine on colorectal cancer cell lines, SW620 was studied via regulation of JAK/STAT/ERK signaling pathway. Materials and Methods Different doses of ethacridine (5–35 µM) expressed antiproliferative effects by decreasing the viability in a dose-dependent manner and the IC50 value was found to be 10 µM. Results Subsequent treatment with 10 µM of ethacridine showed that it induced mitochondrial dysfunction and reactive oxygen species generation. DAPI and PI staining assays revealed prominent apoptotic cells under the microscope when treated with 10 µM of ethacridine. In the mRNA expression study performing RT-PCR of apoptotic markers, cyclin-D1, Bax, Bcl-2, caspase 3, C-Myc, and surviving, enhanced levels of these markers were suppressed, which was inversely proportional to the levels of apoptotic enhancers namely Bax and caspase-3. It was also observed that increased NF-κB, IL-6, TNF-α, and COX-2 in colorectal cancer are suppressed by ethacridine. The expressions of JAK/STAT/ERK were also significantly suppressed after ethacridine treatment in SW620 cell lines. Conclusion In summary, it was corroborated that ethacridine promoted apoptosis in colon cancer cells by inhibiting quite a few cell signaling factors.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Gastroenterology, Hanzhong Central Hospital, Hanzhong, China
| | - Hui Yang
- Department of Oncology Rehabilitation, Shaanxi Kangfu Hospital, Xi’an, China
| | - Wei Wei
- Department of Pathology, Xi’an No. 3 Hospital, Xi’an, China
| | - Jing Zhao
- Department of Oncology Rehabilitation, Shaanxi Kangfu Hospital, Xi’an, China
| | - Annamalai Vijayalakshmi
- Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, Tamil Nadu, India
| | - Minhong Wang
- Department of Digestive Oncology, Pucheng County Hospital, Weinan, China
| |
Collapse
|
3
|
Lecoutre S, Lambert M, Drygalski K, Dugail I, Maqdasy S, Hautefeuille M, Clément K. Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells 2022; 11:cells11152310. [PMID: 35954152 PMCID: PMC9367348 DOI: 10.3390/cells11152310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The expansion of adipose tissue is an adaptive mechanism that increases nutrient buffering capacity in response to an overall positive energy balance. Over the course of expansion, the adipose microenvironment undergoes continual remodeling to maintain its structural and functional integrity. However, in the long run, adipose tissue remodeling, typically characterized by adipocyte hypertrophy, immune cells infiltration, fibrosis and changes in vascular architecture, generates mechanical stress on adipose cells. This mechanical stimulus is then transduced into a biochemical signal that alters adipose function through mechanotransduction. In this review, we describe the physical changes occurring during adipose tissue remodeling, and how they regulate adipose cell physiology and promote obesity-associated dysfunction in adipose tissue.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Mélanie Lambert
- Labex Inflamex, Université Sorbonne Paris Nord, INSERM, F-93000 Bobigny, France;
| | - Krzysztof Drygalski
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), IBPS, Sorbonne Université, F-75005 Paris, France;
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
- Assistance Publique Hôpitaux de Paris, Nutrition Department, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
- Correspondence: or
| |
Collapse
|
4
|
Ouyang Z, Kang D, Li K, Liang G, Liu Z, Mai Q, Chen Q, Yao C, Wei R, Tan X, Bai X, Huang B, Li Q. DEPTOR exacerbates bone-fat imbalance in osteoporosis by transcriptionally modulating BMSC differentiation. Biomed Pharmacother 2022; 151:113164. [PMID: 35609371 DOI: 10.1016/j.biopha.2022.113164] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) tend to differentiate into adipocytes rather than osteoblasts in osteoporosis and other pathological conditions. Understanding the mechanisms underlying the adipo-osteogenic imbalance greatly contributes to the ability to induce specific MSC differentiation for clinical applications. This study aimed to explore whether DEP-domain containing mTOR-interacting protein (DEPTOR) regulated MSC fate and bone-fat switch, which was indicated to be a key player in bone homeostasis. We found that DEPTOR expression decreased during the osteogenesis of BMSCs but increased during adipogenesis and the shift of cell lineage commitment of BMSCs to adipocytes in mice with osteoporosis. DEPTOR facilitated adipogenic differentiation while preventing the osteogenic differentiation of BMSCs. Deptor ablation in BMSCs alleviated bone loss and reduced marrow fat accumulation in mice with osteoporosis. Mechanistically, DEPTOR binds transcriptional coactivator with a PDZ-binding motif (TAZ) and inhibits its transactivation properties, thereby repressing the transcriptional activity of RUNX2 and elevating gene transcription by peroxisome-proliferator-activated receptor-gamma. TAZ knockdown in BMSCs abolished the beneficial role of Deptor ablation in bone-fat balance in mice. Together, our data indicate that DEPTOR is a molecular rheostat that modulates BMSC differentiation and bone-fat balance, and may represent a potential therapeutic target for age-related bone loss.
Collapse
Affiliation(s)
- Zhicong Ouyang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Dawei Kang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Department of Orthopedics, Dazhou Second People's Hospital of Sichuan Province, Dazhou 635000, China
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Guojun Liang
- Department of Orthopedics, Guangzhou Huaxin Orthopaedic Hospital of Shantou University, Guangzhou 510507, China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qiguang Mai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qingjing Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Chenfeng Yao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ruiming Wei
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xianchun Tan
- Department of Orthopedics, Dazhou Second People's Hospital of Sichuan Province, Dazhou 635000, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
5
|
CSE1L promotes nuclear accumulation of transcriptional coactivator TAZ and enhances invasiveness of human cancer cells. J Biol Chem 2021; 297:100803. [PMID: 34022224 PMCID: PMC8209642 DOI: 10.1016/j.jbc.2021.100803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
The transcriptional coactivator with PDZ-binding motif (TAZ) (WWTR1) induces epithelial-mesenchymal transition and enhances drug resistance in multiple cancers. TAZ has been shown to interact with transcription factors in the nucleus, but when phosphorylated, translocates to the cytoplasm and is degraded through proteasomes. Here, we identified a compound TAZ inhibitor 4 (TI-4) that shifted TAZ localization to the cytoplasm independently of its phosphorylation. We used affinity beads to ascertain a putative target of TI-4, chromosomal segregation 1 like (CSE1L), which is known to be involved in the recycling of importin α and as a biomarker of cancer malignancy. We found that TI-4 suppressed TAZ-mediated transcription in a CSE1L-dependent manner. CSE1L overexpression increased nuclear levels of TAZ, whereas CSE1L silencing delayed its nuclear import. We also found via the in vitro coimmunoprecipitation experiments that TI-4 strengthened the interaction between CSE1L and importin α5 and blocked the binding of importin α5 to TAZ. WWTR1 silencing attenuated CSE1L-promoted colony formation, motility, and invasiveness of human lung cancer and glioblastoma cells. Conversely, CSE1L silencing blocked TAZ-promoted colony formation, motility, and invasiveness in human lung cancer and glioblastoma cells. In human cancer tissues, the expression level of CSE1L was found to correlate with nuclear levels of TAZ. These findings support that CSE1L promotes the nuclear accumulation of TAZ and enhances malignancy in cancer cells.
Collapse
|
6
|
Jeong MG, Kim HK, Hwang ES. The essential role of TAZ in normal tissue homeostasis. Arch Pharm Res 2021; 44:253-262. [PMID: 33770379 PMCID: PMC8009801 DOI: 10.1007/s12272-021-01322-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/14/2021] [Indexed: 02/06/2023]
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) has been extensively characterized in organ development, tissue regeneration, and tumor progression. In particular, TAZ functions as a Hippo mediator that regulates organ size, tumor growth and migration. It is highly expressed in various types of human cancer, and has been reported to be associated with tumor metastasis and poor outcomes in cancer patients, suggesting that TAZ is an oncogenic regulator. Yes-associated protein (YAP) has 60% similarity in amino acid sequence to TAZ and plays redundant roles with TAZ in the regulation of cell proliferation and migration of cancer cells. Therefore, TAZ and YAP, which are encoded by paralogous genes, are referred to as TAZ/YAP and are suggested to be functionally equivalent. Despite its similarity to YAP, TAZ can be clearly distinguished from YAP based on its genetic, structural, and functional aspects. In addition, targeting superabundant TAZ can be a promising therapeutic strategy for cancer treatment; however, persistent TAZ inactivation may cause failure of tissue homeostatic control. This review focuses primarily on TAZ, not YAP, discusses its structural features and physiological functions in the regulation of tissue homeostasis, and provides new insights into the drug development targeting TAZ to control reproductive and musculoskeletal disorders.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, Korea.
| |
Collapse
|
7
|
Heat shock induces the nuclear accumulation of YAP1 via SRC. Exp Cell Res 2020; 399:112439. [PMID: 33359469 DOI: 10.1016/j.yexcr.2020.112439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/24/2020] [Accepted: 12/13/2020] [Indexed: 01/15/2023]
Abstract
Yes-associated protein 1 (YAP1), a co-transcription activator, shuttles between the cytoplasm and the nucleus. Phosphorylation by large tumor suppressor kinases (LATS1/2) is the major determinant of YAP1 subcellular localization. Unphosphorylated YAP1 interacts with transcription factors in the nucleus and regulates gene transcription, while phosphorylated YAP1 is trapped in the cytoplasm and is degraded. We found that when U2OS and HeLa cells are exposed to 42 °C, YAP1 enters the nucleus within 30 min and returns to the cytoplasm at 4 h. SRC and HSP90 are involved in nuclear accumulation and return to the cytoplasm, respectively. Upon heat shock, LATS2 forms aggregates including protein phosphatase 1 and is dephosphorylated and inactivated. SRC activation is necessary for the formation of aggregates, while HSP90 is required for their dissociation. YAP1 is involved in heat shock-induced NF-κB signaling. Mechanistically, YAP1 is implicated in strengthening the interaction between RELA and DPF3, a component of SWI/SNF chromatin remodeling complex, in response to heat shock. Thus, YAP1 plays a role as a thermosensor.
Collapse
|
8
|
Nishida T, Nagao Y, Hashitani S, Yamanaka N, Takigawa M, Kubota S. Suppression of adipocyte differentiation by low-intensity pulsed ultrasound via inhibition of insulin signaling and promotion of CCN family protein 2. J Cell Biochem 2020; 121:4724-4740. [PMID: 32065439 DOI: 10.1002/jcb.29680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Adipocyte differentiation is regulated by several transcription factors such as the CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor-γ (PPARγ). Here, we demonstrate that low-intensity pulsed ultrasound (LIPUS) suppressed differentiation into mature adipocytes via multiple signaling pathways. When C3H10T1/2, a mesenchymal stem cell line, was treated with LIPUS (3.0 MHz, 60 mW/cm2 ) for 20 minutes once a day for 4 days during adipogenesis, and both the number of lipid droplets and the gene expression of PPARγ and C/EBPα were significantly decreased. Furthermore, LIPUS treatment decreased the phosphorylation of the insulin receptor and also that of Akt and ERK1/2, which are located downstream of this receptor. Next, we showed that LIPUS suppressed the gene expression of angiotensinogen (AGT), which is an adipokine produced by mature adipocytes, as well as that of angiotensin-converting enzyme 1 (ACE1) and angiotensin receptor type 1 (AT1 R) during adipogenesis of pre-adipogenic 3T3-L1 cells. Next, the translocation of Yes-associated protein (YAP) into the nucleus of 3T3-L1 cells was promoted by LIPUS, leading to upregulation of CCN family protein 2 (CCN2), a cellular communication network factor. Moreover, forced expression of CCN2 in 3T3-L1 cells decreased PPARγ gene expression, but it did not increase alkaline phosphatase and osterix gene expression. Finally, gene silencing of CCN2 in C3H10T1/2 cells diminished the effect of LIPUS on the gene expression of PPARγ and C/EBPα. These findings suggest that LIPUS suppressed adipogenesis through inhibition of insulin signaling and decreased PPARγ expression via increased CCN2 production, resulting in a possible decrease of mature adipocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yurika Nagao
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoko Hashitani
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Abstract
Objective: It has been demonstrated that the transcription factors TAZ (transcriptional coactivator with PDZ-binding motif), paired box gene 8 (PAX8), and NK2 homeobox 1 (NKX2-1) are coexpressed in the nucleus of thyroid cells. Furthermore, TAZ is known to enhance the transcriptional activity of PAX8 and NKX2-1 as well as the key thyroid-specific gene, thyroglobulin (TG), suggesting a critical role for TAZ in the control of thyroid cell speciation. We previously reported that the small molecule ethacridine, identified as a TAZ activator, was able to induce thyroid-specific transcription in endodermal cells differentiated from human embryonic stem (hES) cells using activin A. Since transcription factors are epigenetically regulated in cell differentiation, we investigated the epigenetic changes in the promoter regions of these key transcription factors during in vitro differentiation of hES cells into thyrocytes. Methods: We initially profiled chromatin accessibility using the technique of Assay for Transposase Accessible Chromatin sequencing (ATAC-seq), and then examined DNA methylation and histone acetylation in the promoter regions of the three selected thyroid transcription factors and the thyroid-specific genes during hES cell differentiation. Results: ATAC-seq analysis showed enriched chromatin accessibility of TAZ, NKX2-1, and PAX8 after exposure to activin A and ethacridine. There were no methylation changes found in the NKX2-1, PAX8, and TAZ promoters by bisulfite sequencing. In contrast, acetylation of histone H4, specifically acetylation of lysine 16, was observed in each of the promoters when measured by chromatin immunoprecipitation polymerase chain reaction assays, which correlated with the activity and expression of NKX2-1 and PAX8 as well as sodium/iodide symporter, thyroid stimulating hormone receptor, and TG genes. Conclusions: These results indicate that ethacridine treatment of activin A-derived endodermal hES cells leads to enhanced chromatin accessibility, which, in turn, allows histone H4 acetylation in the regulation of active genes for speciation of thyroid follicular cells from hES cells.
Collapse
Affiliation(s)
- Risheng Ma
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, The James J. Peters VA Medical Center, New York, New York, USA
- Address correspondence to: Risheng Ma, MD, PhD, Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, The James J. Peters VA Medical Center, Room 4-23, 1 Gustave L. Levy Place, Box No. 1055, New York, NY 10029-5674, USA
| | - Syed Morshed
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, The James J. Peters VA Medical Center, New York, New York, USA
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, The James J. Peters VA Medical Center, New York, New York, USA
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, The James J. Peters VA Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Xie W, Xiao W, Tang K, Zhang L, Li Y. Yes-Associated Protein 1: Role and Treatment Prospects in Orthopedic Degenerative Diseases. Front Cell Dev Biol 2020; 8:573455. [PMID: 33178690 PMCID: PMC7593614 DOI: 10.3389/fcell.2020.573455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/25/2020] [Indexed: 01/11/2023] Open
Abstract
The Hippo/yes-associated protein 1 signaling pathway is an evolutionarily conserved signaling pathway. This signaling pathway is primarily involved in the regulation of stem cell self-renewal, organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. It plays an important role in embryonic development and tissue organ formation. Yes-associated protein 1 (YAP1) is a key transcription factor in the Hippo signaling pathway and is negatively regulated by this pathway. Changes in YAP1 expression levels affect the occurrence and development of a variety of tumors, but the specific mechanism associated with this phenomenon has not been thoroughly studied. Recently, several studies have described the role of YAP1 in osteoarthritis (OA). Indeed, YAP1 is involved in orthopedic degenerative diseases such as osteoporosis (OP) in addition to OA. In this review, we will summarize the significance of YAP1 in orthopedic degenerative diseases and discuss the potential of the targeted modulation of YAP1 for the treatment of these diseases.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Tang
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
12
|
Characterization of a novel compound that promotes myogenesis via Akt and transcriptional co-activator with PDZ-binding motif (TAZ) in mouse C2C12 cells. PLoS One 2020; 15:e0231265. [PMID: 32267872 PMCID: PMC7141682 DOI: 10.1371/journal.pone.0231265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/19/2020] [Indexed: 11/19/2022] Open
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in the regulation of cell proliferation and differentiation. TAZ activity changes in response to the cellular environment such as mechanic and nutritional stimuli, osmolarity, and hypoxia. To understand the physiological roles of TAZ, chemical compounds that activate TAZ in cells are useful as experimental reagents. Kaempferol, TM-25659, and ethacridine are reported as TAZ activators. However, as each TAZ activator has a distinct property in cellular functions, additional TAZ activators are awaiting. We screened for TAZ activators and previously reported IB008738 as a TAZ activator that promotes myogenesis in C2C12 cells. In this study, we have characterized IBS004735 that was obtained in the same screening. IBS004735 also promotes myogenesis in C2C12 cells, but is not similar to IBS008738 in the structure. IBS004735 activates TAZ via Akt and has no effect on TAZ phosphorylation, which is the well-described key modification to regulate TAZ activity. Thus, we introduce IBS004735 as a novel TAZ activator that regulates TAZ in a yet unidentified mechanism.
Collapse
|
13
|
Tanaka H, Homma H, Fujita K, Kondo K, Yamada S, Jin X, Waragai M, Ohtomo G, Iwata A, Tagawa K, Atsuta N, Katsuno M, Tomita N, Furukawa K, Saito Y, Saito T, Ichise A, Shibata S, Arai H, Saido T, Sudol M, Muramatsu SI, Okano H, Mufson EJ, Sobue G, Murayama S, Okazawa H. YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology. Nat Commun 2020; 11:507. [PMID: 31980612 PMCID: PMC6981281 DOI: 10.1038/s41467-020-14353-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/19/2019] [Indexed: 01/29/2023] Open
Abstract
The timing and characteristics of neuronal death in Alzheimer’s disease (AD) remain largely unknown. Here we examine AD mouse models with an original marker, myristoylated alanine-rich C-kinase substrate phosphorylated at serine 46 (pSer46-MARCKS), and reveal an increase of neuronal necrosis during pre-symptomatic phase and a subsequent decrease during symptomatic phase. Postmortem brains of mild cognitive impairment (MCI) rather than symptomatic AD patients reveal a remarkable increase of necrosis. In vivo imaging reveals instability of endoplasmic reticulum (ER) in mouse AD models and genome-edited human AD iPS cell-derived neurons. The level of nuclear Yes-associated protein (YAP) is remarkably decreased in such neurons under AD pathology due to the sequestration into cytoplasmic amyloid beta (Aβ) aggregates, supporting the feature of YAP-dependent necrosis. Suppression of early-stage neuronal death by AAV-YAPdeltaC reduces the later-stage extracellular Aβ burden and cognitive impairment, suggesting that preclinical/prodromal YAP-dependent neuronal necrosis represents a target for AD therapeutics. The precise mechanisms of neuronal cell death in neurodegeneration are not fully understood. Here the authors show that YAP-mediated neuronal necrosis is increased in pre-symptomatic stages of Alzheimer’s disease and intervention to the necrosis rescues extracellular Aβ aggregation and symptoms in a mouse model.
Collapse
Affiliation(s)
- Hikari Tanaka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kanoh Kondo
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shingo Yamada
- Shino-Test Corporation, 2-29-14, Ohino-dai, Minami-ku, Sagamihara, Kanagawa, 252-0331, Japan
| | - Xiaocen Jin
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masaaki Waragai
- Department of Neurology, Higashi Matsudo Municipal Hospital, Matsudo, Chiba, 270-2222, Japan
| | - Gaku Ohtomo
- Department of Neurology, The University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Iwata
- Department of Neurology, The University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Naoki Atsuta
- Department of Neurology, Brain and Mind Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Brain and Mind Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Naoki Tomita
- Department of Geriatrics & Gerontology, Division of Brain Science, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Katsutoshi Furukawa
- Department of Geriatrics & Gerontology, Division of Brain Science, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higahsi-machi, Kodaira, Tokyo, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ayaka Ichise
- Department of Physiology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Arai
- Department of Geriatrics & Gerontology, Division of Brain Science, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Yong Loo Li School of Medicine, 2 Medical Drive, Singapore, 117597, Singapore
| | - Shin-Ichi Muramatsu
- Department of Neurology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0496, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Gen Sobue
- Department of Neurology, Brain and Mind Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Brain Bank for Aging Research, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
14
|
Ma R, Shi R, Morshed SA, Latif R, Davies TF. Derivation and 97% Purification of Human Thyroid Cells From Dermal Fibroblasts. Front Endocrinol (Lausanne) 2020; 11:446. [PMID: 32760346 PMCID: PMC7373738 DOI: 10.3389/fendo.2020.00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background: The success in rescuing thyroid deficiency in mice using thyroid cells derived from embryonic stem (ES) cells, together with the discovery of human induced pluripotent stem cells (iPSCs) from somatic cells, has raised the possibility of patient-specific thyroid cell replacement. In this study we demonstrate that human thyroid follicular cells can be derived from human iPSCs and show the ability of highly purified and differentiated cells to secrete thyroid hormone. Research Design and Methods: Human iPSCs were derived from adult skin fibroblasts using RNA reprogramming and differentiated in vitro into thyroid follicular cells by exposure to activin A, ethacridine and TSH as we have previously described for human ES cells. The resulting thyroid cells were then highly purified using double antibody cell sorting. Results: The iPSCs derived from human dermal fibroblasts showed stem cell-like morphologic changes and expressed pluripotent stem cell markers as assessed using qPCR, immunofluorescence staining, and FACS analysis. These cells retained their pluripotential characteristics as shown by teratoma formation after murine transplantation. Definitive endoderm cells were induced with activin A and the transcription factor TAZ was significantly induced on ethacridine treatment and translocated to the nucleus. Thyroid transcription factors NKX2-1 and PAX8 were also highly expressed in activin A derived endoderm cells and further induced by ethacridine. Following terminal differentiation with TSH, there was enhanced thyroid follicle formation, high expression of the thyroid specific genes-TG, TPO, TSHR and NIS, and secretion of thyroid hormone (T4) in vitro. Furthermore, we were able to achieve a 97% purification of TSHR+/NIS+ expressing cells after differentiation using a single purification procedure. Conclusions: These findings demonstrate that mature adult dermal fibroblasts can be matured into human iPSCs which have the potential to form functional thyroid follicular cells. This lays the groundwork for future person-specific thyroid regenerative therapy.
Collapse
|
15
|
Gobbi G, Donati B, Do Valle IF, Reggiani F, Torricelli F, Remondini D, Castellani G, Ambrosetti DC, Ciarrocchi A, Sancisi V. The Hippo pathway modulates resistance to BET proteins inhibitors in lung cancer cells. Oncogene 2019; 38:6801-6817. [PMID: 31406246 DOI: 10.1038/s41388-019-0924-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 11/09/2022]
Abstract
Inhibitors of BET proteins (BETi) are anti-cancer drugs that have shown efficacy in pre-clinical settings and are currently in clinical trials for different types of cancer, including non-small cell lung cancer (NSCLC). Currently, no predictive biomarker is available to identify patients that may benefit from this treatment. To uncover the mechanisms of resistance to BETi, we performed a genome-scale CRISPR/Cas9 screening in lung cancer cells. We identified three Hippo pathway genes, LATS2, TAOK1, and NF2, as key determinants for sensitivity to BETi. The knockout of these genes induces resistance to BETi, by promoting TAZ nuclear localization and transcriptional activity. Conversely, TAZ expression promotes resistance to these drugs. We also showed that TAZ, YAP, and their partner TEAD are direct targets of BRD4 and that treatment with BETi downregulates their expression. Noticeably, molecular alterations in one or more of these genes are present in a large fraction of NSCLC patients and TAZ amplification or overexpression correlates with a worse outcome in lung adenocarcinoma. Our data define the central role of Hippo pathway in mediating resistance to BETi and provide a rationale for using BETi to counter-act YAP/TAZ-mediated pro-oncogenic activity.
Collapse
Affiliation(s)
- Giulia Gobbi
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Italo Faria Do Valle
- Department of Physics, Center for Complex Network Research, Northeastern University, Boston, MA, USA
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | | | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
16
|
Oliver-De La Cruz J, Nardone G, Vrbsky J, Pompeiano A, Perestrelo AR, Capradossi F, Melajová K, Filipensky P, Forte G. Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials 2019; 205:64-80. [PMID: 30904599 DOI: 10.1016/j.biomaterials.2019.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022]
Abstract
The mechanoregulated proteins YAP/TAZ are involved in the adipogenic/osteogenic switch of mesenchymal stem cells (MSCs). MSC fate decision can be unbalanced by controlling substrate mechanics, in turn altering the transmission of tension through cell cytoskeleton. MSCs have been proposed for orthopedic and reconstructive surgery applications. Thus, a tight control of their adipogenic potential is required in order to avoid their drifting towards fat tissue. Substrate mechanics has been shown to drive MSC commitment and to regulate YAP/TAZ protein shuttling and turnover. The mechanism by which YAP/TAZ co-transcriptional activity is mechanically regulated during MSC fate acquisition is still debated. Here, we design few bioengineering tools suited to disentangle the contribution of mechanical from biological stimuli to MSC adipogenesis. We demonstrate that the mechanical repression of YAP happens through its phosphorylation, is purely mediated by cell spreading downstream of substrate mechanics as dictated by dimensionality. YAP repression is sufficient to prompt MSC adipogenesis, regardless of a permissive biological environment, TEAD nuclear presence or focal adhesion stabilization. Finally, by harnessing the potential of YAP mechanical regulation, we propose a practical example of the exploitation of adipogenic transdifferentiation in tumors.
Collapse
Affiliation(s)
- Jorge Oliver-De La Cruz
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic
| | - Giorgia Nardone
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Vrbsky
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Antonio Pompeiano
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Francesco Capradossi
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Katarína Melajová
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | | | - Giancarlo Forte
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic; Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland.
| |
Collapse
|
17
|
Ji Y, Zhang P, Xing Y, Jia L, Zhang Y, Jia T, Wu X, Zhao B, Xu X. Effect of 1α, 25-dihydroxyvitamin D3 on the osteogenic differentiation of human periodontal ligament stem cells and the underlying regulatory mechanism. Int J Mol Med 2018; 43:167-176. [PMID: 30365053 PMCID: PMC6257868 DOI: 10.3892/ijmm.2018.3947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
1α, 25-dihydroxyvitamin D3 (1,25-D3), an active vitamin D metabolite, is a well-known regulator of osteogenic differentiation. However, how 1,25-D3 regulates osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs) remains to be fully elucidated. The present study aimed to clarify this issue through well-controlled in vitro experiments. After hPDLSCs were treated with 1,25-D3, immunofluorescence and western blotting were used to detect the expression of vitamin D receptor; Cell Counting Kit-8 and western blotting were used to assay the cell proliferation ability. Alkaline phosphatase staining, Alizarin Red staining and western blotting were used to detect the osteogenic differentiation. It was found that treating hPDLSCs with 1,25-D3: i) Inhibited cell proliferation; ii) promoted osteogenic differentiation; iii) upregulated the expression of transcriptional coactivator with PDZ-binding motif (TAZ), an important downstream effector of Hippo signaling that has been demonstrated to be involved in the osteogenic differentiation of stem/progenitor cells; and iv) that co-treatment of TAZ-overexpressing hPDLSCs with 1,25-D3 synergistically stimulated the expression of osteogenic markers. These results suggested that the induction of osteogenic differentiation promoted by 1,25-D3 in hPDLSCs involves, at least in part, the action of TAZ.
Collapse
Affiliation(s)
- Yawen Ji
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Panpan Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yixiao Xing
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Linglu Jia
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tingting Jia
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuan Wu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Zhao
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
18
|
The RASSF6 Tumor Suppressor Protein Regulates Apoptosis and Cell Cycle Progression via Retinoblastoma Protein. Mol Cell Biol 2018; 38:MCB.00046-18. [PMID: 29891515 DOI: 10.1128/mcb.00046-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers, and its low expression level is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in a p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression by suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73 target genes via pRb and E2F1 in a p53-negative background. Finally, we confirmed that RASSF6 depletion induces polyploid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with loss of function of p53, and pRb is implicated in this function of RASSF6.
Collapse
|
19
|
Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells. Stem Cell Res Ther 2018. [PMID: 29514703 PMCID: PMC5842656 DOI: 10.1186/s13287-018-0799-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Adipose-derived stem cells (ADSCs) are an attractive cell source for bone tissue engineering and have great potential for bone regeneration and defect repair. The transcriptional coactivator with PDZ-binding motif (TAZ) has been demonstrated to modulate osteogenic and adipogenic differentiation of mesenchymal stem cells. However, its roles during ADSC differentiation and therapeutic potentials for bone regeneration have as yet not been well established. Methods TAZ expression was measured during osteogenic differentiation of ADSCs in vitro. Both loss-of-function and gain-of-function approaches by TAZ knockdown or enforced overexpression were utilized to determine its functions during osteogenic differentiation of ADSCs. TM-25659, a chemical activator of TAZ, was used to determine whether pharmacological activation of TAZ in ADSCs enhanced osteogenic differentiation in vitro and bone formation in animal models. The molecular mechanisms underlying TAZ in promoting osteogenesis of ADSCs were also explored. Results Increased TAZ expression was observed during osteogenic differentiation of human ADSCs. TAZ knockdown resulted in compromised osteogenic differentiation and enhanced adipogenic differentiation of ADSCs. In contrast, enforced TAZ overexpression yielded increased osteogenic differentiation and bone regeneration in vivo, and impaired adipogenic differentiation of ADSCs. Pharmacological activation of TAZ by its chemical activator TM-25659 facilitated osteogenic differentiation of ADSCs. Noticeably, transient treatment of ADSCs with TM-25659 or intraperitoneal injection of TM-25659 significantly enhanced bone regeneration of ADSCs loaded with porous β-TCP in vivo. Mechanistically, TM-25659 exposure significantly promoted TAZ phosphorylation and nuclear translocation, and potentiated the assembly of the TAZ-Runx2 complex. Subsequently, the TAZ-Runx2 complex was further recruited to the promoter of osteocalcin and in turn enhanced its transcription. Conclusions Our findings indicate that TAZ is a key mediator that promotes ADSC commitment to the osteoblast lineage. Pharmacological activation of TAZ in ADSCs might become a feasible and promising approach to enhance bone regeneration and repair. Electronic supplementary material The online version of this article (10.1186/s13287-018-0799-z) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Maruyama J, Inami K, Michishita F, Jiang X, Iwasa H, Nakagawa K, Ishigami-Yuasa M, Kagechika H, Miyamura N, Hirayama J, Nishina H, Nogawa D, Yamamoto K, Hata Y. Novel YAP1 Activator, Identified by Transcription-Based Functional Screen, Limits Multiple Myeloma Growth. Mol Cancer Res 2017; 16:197-211. [DOI: 10.1158/1541-7786.mcr-17-0382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 10/10/2017] [Indexed: 11/16/2022]
|
21
|
Zou R, Li D, Wang G, Zhang M, Zhao Y, Yang Z. TAZ Activator Is Involved in IL-10-Mediated Muscle Responses in an Animal Model of Traumatic Brain Injury. Inflammation 2017; 40:100-105. [PMID: 27718096 DOI: 10.1007/s10753-016-0457-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcriptional coactivator with PDZ-binding motif (TAZ) functions as a downstream regulatory target in the Hippo signaling pathway that plays various roles. We previously developed a cell-based assay and identified the TAZ activator IBS008738 as a potential therapeutic target for glucocorticoid-induced atrophy. To further explore the application of IBS008738 in various muscle-related diseases, we examined the function of IBS008738 in inflammatory cytokine-mediated mouse muscle responses after traumatic brain injury (TBI). Preliminary screening suggested that IBS008738 treatments increased the levels of IL-10 in C2C12 cells. In TBI and sham control mice, we compared the effect of IBS008738 treatments on TNF α, IL-6, and IL-10 mRNA levels, muscle morphologic changes, and macrophage phenotype changes. Our findings support that the TAZ activator IBS008738 decreases muscle wasting by upregulating IL-10 and inhibiting TNF α and IL-6, and this process is implemented by changing the macrophage phenotypes. These results indicate a new mechanism of the TAZ activator as a potential therapy for atrophy.
Collapse
Affiliation(s)
- Ruyi Zou
- Department of Neurosurgery, General Hospital of Benxi Iron and Steel CO. LTD, Benxi, 117000, China
| | - Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Gang Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Mo Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yili Zhao
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, 23507, VA, USA
| | - Zeyu Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
22
|
Janzen C, Sen S, Lei MYY, Gagliardi de Assumpcao M, Challis J, Chaudhuri G. The Role of Epithelial to Mesenchymal Transition in Human Amniotic Membrane Rupture. J Clin Endocrinol Metab 2017; 102:1261-1269. [PMID: 28388726 PMCID: PMC5460731 DOI: 10.1210/jc.2016-3150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
CONTEXT Biochemical weakening of the amnion is a major factor preceding preterm premature rupture of membranes (PPROMs), leading to preterm birth. Activation of matrix metalloproteinases (MMPs) is known to play a key role in collagen degradation of the amnion; however, epithelial to mesenchymal transition (EMT) that is also induced by MMP activation has not been investigated as a mechanism for amnion weakening. OBJECTIVE To measure amniotic EMT associated with vaginal delivery (VD) compared with unlabored cesarean sections (CSs), and to assess changes in amniotic mechanical strength with pharmacologic inhibitors and inducers of EMT, thus testing the hypothesis that EMT is a key biochemical event that promotes amniotic rupture. FINDINGS (1) Amnions taken from VD contained a significantly increased number of mesenchymal cells relative to epithelial cells compared with unlabored CS by fluorescence-activated cell sorting analysis (60% vs 10%); (2) tumor necrosis factor (TNF)-α stimulation of amniotic epithelial cells increased expression of the mesenchymal marker vimentin after 2 days; (3) EMT inhibitor, etodolac, significantly increased the time and mechanical pressure required to rupture the amnion; and (4) TNF-α and another pharmacologic EMT inducer, ethacridine, decreased the time and mechanical pressure required for amnion rupture, further confirming that the mesenchymal phenotype significantly weakens the amnion. CONCLUSIONS This work demonstrated amniotic cell EMT was associated with labor and EMT decreased the tensile strength of the amnion. These findings suggest a role for EMT in the pathophysiology of PPROM and may provide a basis for development of therapies to prevent preterm labor.
Collapse
Affiliation(s)
- Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California 90095, Los Angeles, Los Angeles, California
| | - Suvajit Sen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California 90095, Los Angeles, Los Angeles, California
| | - Margarida Y Y Lei
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California 90095, Los Angeles, Los Angeles, California
| | | | - John Challis
- University of Western Australia and Curtin University, Crawley, Western Australia 6009, Australia
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California 90095, Los Angeles, Los Angeles, California
| |
Collapse
|
23
|
Ma R, Morshed SA, Latif R, Davies TF. TAZ Induction Directs Differentiation of Thyroid Follicular Cells from Human Embryonic Stem Cells. Thyroid 2017; 27:292-299. [PMID: 27829313 PMCID: PMC5912722 DOI: 10.1089/thy.2016.0264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The differentiation program for human thyroid follicular cells (TFCs) relies on the interplay between sequence-specific transcription factors and transcriptional co-regulators. Transcriptional co-activator with PDZ-binding motif (TAZ) is a co-activator that regulates several transcription factors, including PAX8 and NKX2-1, which play a central role in thyroid-specific gene transcription. TAZ and PAX8/NKX2-1 are co-expressed in the nuclei of thyroid cells, and TAZ interacts directly with both PAX8 and NKX2-1, leading to their enhanced transcriptional activity on the thyroglobulin (TG) promoter and additional genes. METHODS The use of a small molecule, ethacridine, recently identified as a TAZ activator, in the differentiation of thyroid cells from human embryonic stem (hES) cells was studied. First, endodermal cells were derived from hES cells using Activin A, followed by induction of differentiation into thyroid cells directed by ethacridine and thyrotropin (TSH). RESULTS The expression of TAZ was increased in the Activin A-derived endodermal cells by ethacridine in a dose-dependent manner and followed by increases in PAX8 and NKX2-1 when assessed by both quantitative polymerase chain reaction and immunostaining. Following further differentiation with the combination of ethacridine and TSH, the thyroid-specific genes TG, TPO, TSHR, and NIS were all induced in the differentiated hES cells. When these cells were cultured with extracellular matrix-coated dishes, thyroid follicle formation and abundant TG protein expression were observed. Furthermore, such hES cell-derived thyroid follicles showed a marked TSH-induced and dose-dependent increase in radioiodine uptake and protein-bound iodine accumulation. CONCLUSION These data show that fully functional human thyroid cells can be derived from hES cells using ethacridine, a TAZ activator, which induces thyroid-specific gene expression and promotes thyroid cell differentiation from the hES cells. These studies again demonstrate the importance of transcriptional regulation in thyroid cell development. This approach also yields functional human thyrocytes, without any gene transfection or complex culture conditions, by directly manipulating the transcriptional machinery without interfering with intermediate signaling events.
Collapse
Affiliation(s)
- Risheng Ma
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center and the James J. Peters VA Medical Center , New York, New York
| | - Syed A Morshed
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center and the James J. Peters VA Medical Center , New York, New York
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center and the James J. Peters VA Medical Center , New York, New York
| | - Terry F Davies
- Thyroid Research Unit, Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center and the James J. Peters VA Medical Center , New York, New York
| |
Collapse
|
24
|
Nagashima S, Maruyama J, Kawano S, Iwasa H, Nakagawa K, Ishigami-Yuasa M, Kagechika H, Nishina H, Hata Y. Validation of chemical compound library screening for transcriptional co-activator with PDZ-binding motif inhibitors using GFP-fused transcriptional co-activator with PDZ-binding motif. Cancer Sci 2016; 107:791-802. [PMID: 27009852 PMCID: PMC4968592 DOI: 10.1111/cas.12936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/26/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds.
Collapse
Affiliation(s)
- Shunta Nagashima
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shodai Kawano
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Nakagawa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|