1
|
Kampoun T, Srichairatanakool S, Prommana P, Shaw PJ, Green JL, Knuepfer E, Holder AA, Uthaipibull C. Apicoplast ribosomal protein S10-V127M enhances artemisinin resistance of a Kelch13 transgenic Plasmodium falciparum. Malar J 2022; 21:302. [PMID: 36303209 PMCID: PMC9615251 DOI: 10.1186/s12936-022-04330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background The resistance of Plasmodium falciparum to artemisinin-based (ART) drugs, the front-line drug family used in artemisinin-based combination therapy (ACT) for treatment of malaria, is of great concern. Mutations in the kelch13 (k13) gene (for example, those resulting in the Cys580Tyr [C580Y] variant) were identified as genetic markers for ART-resistant parasites, which suggests they are associated with resistance mechanisms. However, not all resistant parasites contain a k13 mutation, and clearly greater understanding of resistance mechanisms is required. A genome-wide association study (GWAS) found single nucleotide polymorphisms associated with ART-resistance in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2), and crt (chloroquine resistance transporter), in addition to k13 gene mutations, suggesting that these alleles contribute to the resistance phenotype. The importance of the FD and ARPS10 variants in ART resistance was then studied since both proteins likely function in the apicoplast, which is a location distinct from that of K13. Methods The reported mutations were introduced, together with a mutation to produce the k13-C580Y variant into the ART-sensitive 3D7 parasite line and the effect on ART-susceptibility using the 0−3 h ring survival assay (RSA0−3 h) was investigated. Results and conclusion Introducing both fd-D193Y and arps10-V127M into a k13-C580Y-containing parasite, but not a wild-type k13 parasite, increased survival of the parasite in the RSA0−3 h. The results suggest epistasis of arps10 and k13, with arps10-V127M a modifier of ART susceptibility in different k13 allele backgrounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04330-3.
Collapse
|
2
|
Thioredoxin Reductase-Type Ferredoxin: NADP+ Oxidoreductase of Rhodopseudomonas palustris: Potentiometric Characteristics and Reactions with Nonphysiological Oxidants. Antioxidants (Basel) 2022; 11:antiox11051000. [PMID: 35624864 PMCID: PMC9137726 DOI: 10.3390/antiox11051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Rhodopseudomonas palustris ferredoxin:NADP+ oxidoreductase (RpFNR) belongs to a novel group of thioredoxin reductase-type FNRs with partly characterized redox properties. Based on the reactions of RpFNR with the 3-acetylpyridine adenine dinucleotide phosphate redox couple, we estimated the two-electron reduction midpoint potential of the FAD cofactor to be −0.285 V. 5-Deaza-FMN-sensitized photoreduction revealed −0.017 V separation of the redox potentials between the first and second electron transfer events. We examined the mechanism of oxidation of RpFNR by several different groups of nonphysiological electron acceptors. The kcat/Km values of quinones and aromatic N-oxides toward RpFNR increase with their single-electron reduction midpoint potential. The lower reactivity, mirroring their lower electron self-exchange rate, is also seen to have a similar trend for nitroaromatic compounds. A mixed single- and two-electron reduction was characteristic of quinones, with single-electron reduction accounting for 54% of the electron flux, whereas nitroaromatics were reduced exclusively via single-electron reduction. It is highly possible that the FADH· to FAD oxidation reaction is the rate-limiting step during the reoxidation of reduced FAD. The calculated electron transfer distances in the reaction with quinones and nitroaromatics were close to those of Anabaena and Plasmodium falciparum FNRs, thus demonstrating their similar “intrinsic” reactivity.
Collapse
|
3
|
Effect of Artemisinin on the Redox System of NADPH/FNR/Ferredoxin from Malaria Parasites. Antioxidants (Basel) 2022; 11:antiox11020273. [PMID: 35204156 PMCID: PMC8868210 DOI: 10.3390/antiox11020273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
FNR and ferredoxin constitute a redox cascade, which provides reducing power in the plastid of malaria parasites. Recently, mutation of ferredoxin (D97Y) was reported to be strongly related to the parasite’s resistance to the front-line antimalarial drug artemisinin. In order to gain insight into the mechanism for the resistance, we studied the effect of dihydroartemisinin (DHA), the active compound of artemisinin, on the redox cascade of NADPH/FNR/ferredoxin in in vitro reconstituted systems. DHA partially inhibited the diaphorase activity of FNR by decreasing the affinity of FNR for NADPH. The activity of the electron transfer from FNR to wild-type or D97Y mutant ferredoxin was not significantly affected by DHA. An in silico docking analysis indicated possible binding of DHA molecule in the binding cavity of 2′5′ADP, a competitive inhibitor for NADPH, on FNR. We previously showed that the D97Y mutant of ferredoxin binds to FNR more strongly than wild-type ferredoxin, and ferredoxin and FNR are generally known to be involved in the oxidative stress response. Thus, these results suggest that ferredoxin is not a direct target of artemisinin, but its mutation may be involved in the protective response against the oxidative stress caused by artemisinin.
Collapse
|
4
|
Kimata-Ariga Y, Morihisa R. Functional analyses of plasmodium ferredoxin Asp97Tyr mutant related to artemisinin resistance of human malaria parasites. J Biochem 2021; 170:521-529. [PMID: 34415329 DOI: 10.1093/jb/mvab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
Mutation of Asp97Tyr in the C-terminal region of ferredoxin (PfFd) in the apicoplast of malaria parasites was recently reported to be strongly related to the parasite's resistance to the frontline antimalarial drug, artemisinin. We previously showed that the aromatic amino acid in the C-terminal region of PfFd is important for the interaction with its electron transfer partner, Fd-NADP+ reductase (PfFNR). Here, the importance of the aromatic-aromatic interaction between PfFd and PfFNR was shown using the kinetic analysis of the electron transfer reaction of site-directed mutants of PfFNR with PfFd. Mutation of Asp97Tyr of PfFd was further shown to increase the affinity with PfFNR by the measurements of the dissociation constant (Kd) using tryptophan fluorescence titration and the Michaelis constant (Km) in the kinetic analysis with PfFNRs. Diaphorase activity of PfFNR was inhibited by D97Y PfFd at lower concentration as compared to wild-type PfFd. Ascorbate radical scavenging activity of PfFd and electron transfer activity to a heterogeneous Fd-dependent enzyme was lower with D97Y PfFd than that of wild-type PfFd. These results showed that D97Y mutant of PfFd binds to PfFNR tighter than wild-type PfFd, and thus may suppress the function of PfFNR which could be associated with the action of artemisinin.
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Rena Morihisa
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
5
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
6
|
Biddau M, Santha Kumar TR, Henrich P, Laine LM, Blackburn GJ, Chokkathukalam A, Li T, Lee Sim K, King L, Hoffman SL, Barrett MP, Coombs GH, McFadden GI, Fidock DA, Müller S, Sheiner L. Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes. Int J Parasitol 2021; 51:441-453. [PMID: 33713652 PMCID: PMC8126644 DOI: 10.1016/j.ijpara.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/06/2022]
Abstract
Apicoplast LipB deletion leads to changed antioxidant expression that precedes and coincides with accelerated differentiation. 3D7 Plasmodium exhibits changes in glycolysis and tricarboxylic acid cycle activity after deletion of apicoplast LipB. When LipB is deleted from NF54 Plasmodium, the resulting parasites cannot complete their development in mosquitoes.
Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.
Collapse
Affiliation(s)
- Marco Biddau
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Philipp Henrich
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Larissa M Laine
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Gavin J Blackburn
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Tao Li
- Sanaria Inc., Rockville, MD 20850, USA
| | | | - Lewis King
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | | | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Graham H Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sylke Müller
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
7
|
Swift RP, Rajaram K, Elahi R, Liu HB, Prigge ST. Roles of Ferredoxin-Dependent Proteins in the Apicoplast of Plasmodium falciparum Parasites. mBio 2021; 13:e0302321. [PMID: 35164549 PMCID: PMC8844926 DOI: 10.1128/mbio.03023-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Kimata-Ariga Y, Sakamoto A, Kamatani M, Saitoh T, Hase T. C-terminal aromatic residue of Plasmodium ferredoxin important for the interaction with ferredoxin: NADP(H) oxidoreductase: possible involvement for artemisinin resistance of human malaria parasites. J Biochem 2020; 168:427-434. [DOI: 10.1093/jb/mvaa060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023] Open
Abstract
Abstract
The malaria parasite (Plasmodium sp.) contains a plastid-derived organelle called the apicoplast, which is essential for the growth of the parasite. In this organelle, a redox system comprising plant-type ferredoxin (Fd) and Fd: NADP(H) oxidoreductase (FNR) supplies reducing power for the crucial metabolic pathways. Electron transfer between Plasmodium falciparum Fd (PfFd) and FNR (PfFNR) is performed with higher affinity and specificity than those of plant Fd and FNR. We investigated the structural basis for such superior protein–protein interaction by focussing on the Plasumodium-specific regions of PfFd. Significant contribution of the C-terminal region of PfFd for the electron transfer with PfFNR was revealed by exchanging the C-terminal three residues between plant Fd and PfFd. Further site-directed mutagenesis of the PfFd C-terminal residues indicated that the presence of aromatic residue at Positions 96 and 97 contributes to the lower Km for PfFNR. Physical binding analyses using fluorescence and calorimetric measurements supported the results. A mutation from Asp to Tyr at position 97 of PfFd was recently reported to be strongly associated with P. falciparum resistance to artemisinin, the front line anti-malarial drug. Thus, the enhanced interaction of PfFd D97Y protein with PfFNR could be involved in artemisinin resistance of human malaria parasites.
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Asako Sakamoto
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Miho Kamatani
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Saitoh
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Toshiharu Hase
- Laboratory of Regulation of Biological Reactions, Division of Protein Chemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Lesanavičius M, Aliverti A, Šarlauskas J, Čėnas N. Reactions of Plasmodium falciparum Ferredoxin:NADP + Oxidoreductase with Redox Cycling Xenobiotics: A Mechanistic Study. Int J Mol Sci 2020; 21:ijms21093234. [PMID: 32370303 PMCID: PMC7247349 DOI: 10.3390/ijms21093234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023] Open
Abstract
Ferredoxin:NADP+ oxidoreductase from Plasmodium falciparum (PfFNR) catalyzes the NADPH-dependent reduction of ferredoxin (PfFd), which provides redox equivalents for the biosynthesis of isoprenoids and fatty acids in the apicoplast. Like other flavin-dependent electrontransferases, PfFNR is a potential source of free radicals of quinones and other redox cycling compounds. We report here a kinetic study of the reduction of quinones, nitroaromatic compounds and aromatic N-oxides by PfFNR. We show that all these groups of compounds are reduced in a single-electron pathway, their reactivity increasing with the increase in their single-electron reduction midpoint potential (E17). The reactivity of nitroaromatics is lower than that of quinones and aromatic N-oxides, which is in line with the differences in their electron self-exchange rate constants. Quinone reduction proceeds via a ping-pong mechanism. During the reoxidation of reduced FAD by quinones, the oxidation of FADH. to FAD is the possible rate-limiting step. The calculated electron transfer distances in the reaction of PfFNR with various electron acceptors are similar to those of Anabaena FNR, thus demonstrating their similar “intrinsic” reactivity. Ferredoxin stimulated quinone- and nitro-reductase reactions of PfFNR, evidently providing an additional reduction pathway via reduced PfFd. Based on the available data, PfFNR and possibly PfFd may play a central role in the reductive activation of quinones, nitroaromatics and aromatic N-oxides in P. falciparum, contributing to their antiplasmodial action.
Collapse
Affiliation(s)
- Mindaugas Lesanavičius
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.L.); (J.Š.)
| | - Alessandro Aliverti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy;
| | - Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.L.); (J.Š.)
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (M.L.); (J.Š.)
- Correspondence: ; Tel.: +37-223-4392
| |
Collapse
|
10
|
Kimata-Ariga Y, Chikuma Y, Saitoh T, Miyata M, Yanagihara Y, Yamane K, Hase T. NADP(H) allosterically regulates the interaction between ferredoxin and ferredoxin-NADP + reductase. FEBS Open Bio 2019; 9:2126-2136. [PMID: 31665566 PMCID: PMC6886308 DOI: 10.1002/2211-5463.12752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022] Open
Abstract
Ferredoxin‐NADP+ reductase (FNR) in plants receives electrons from ferredoxin (Fd) at the end of the photosynthetic electron transfer chain and converts NADP+ to NADPH. The interaction between Fd and FNR in plants was previously shown to be attenuated by NADP(H). Here, we investigated the molecular mechanism of this phenomenon using maize FNR and Fd, as the three‐dimensional structure of this complex is available. NADPH, NADP+, and 2′5′‐ADP differentially affected the interaction, as revealed through kinetic and physical binding analyses. Site‐directed mutations of FNR which change the affinity for NADPH altered the affinity for Fd in the opposite direction to that for NADPH. We propose that the binding of NADP(H) causes a conformational change of FNR which is transferred to the Fd‐binding region through different domains of FNR, resulting in allosteric changes in the affinity for Fd. The interaction between ferredoxin (Fd) and Fd‐NADP+ reductase (FNR) in plants is attenuated by NADP(H). Site‐directed mutations of FNR which change the affinity for NADPH altered the affinity for Fd in the opposite direction. We propose that the binding of NADP(H) leads to conformational changes of FNR, resulting in allosteric changes in the affinity for Fd.![]()
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Japan
| | - Yutaro Chikuma
- Laboratory of Regulation of Biological Reactions, Division of Protein Chemistry, Institute for Protein Research, Osaka University, Suita, Japan
| | - Takashi Saitoh
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Masayuki Miyata
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Japan
| | - Yuetsu Yanagihara
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Japan
| | - Kazukiyo Yamane
- Department of Biological Chemistry, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Japan
| | - Toshiharu Hase
- Laboratory of Regulation of Biological Reactions, Division of Protein Chemistry, Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|