1
|
Qin Q, Zhou ZY, Liu Y, Zhou F, Cao C, Teng L. Unraveling the nexus of nesprin in dilated cardiomyopathy: From molecular insights to therapeutic prospects. Life Sci 2024; 358:123126. [PMID: 39396640 DOI: 10.1016/j.lfs.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dilated cardiomyopathy is a complex and debilitating heart disorder characterized by the enlargement and weakening of the cardiac chambers, leading to impaired contractility and heart failure. Nesprins, a family of nuclear envelope spectrin repeat proteins that include isoforms Nesprin-1/-2, are integral components of the LInker of Nucleoskeleton and Cytoskeleton complex. They facilitate the connection between the nuclear envelope and the cytoskeleton, crucial for maintaining nuclear architecture, migration and positioning, and mechanical transduction and signaling. Nesprin-1/-2 are abundantly expressed in cardiac and skeletal muscles.They have emerged as key players in the pathogenesis of dilated cardiomyopathy. Mutations in synaptic nuclear envelope-1/-2 genes encoding Nesprin-1/-2 are associated with dilated cardiomyopathy, underscoring their significance in cardiac health. This review highlights the all known cases of Nesprin-1/-2 related dilated cardiomyopathy, focusing on their interactions with the nuclear envelope, their role in mechanical transduction, and their influence on gene expression. Moreover, it delves into the underlying mechanisms through which Nesprin dysfunction disrupts nuclear-cytoskeletal coupling, leading to abnormal nuclear morphology, impaired mechanotransduction, and altered gene regulation. The exploration of Nesprin's impact on dilated cardiomyopathy offers a promising avenue for therapeutic interventions aimed at ameliorating the disease. This review provides a comprehensive overview of recent advancements in understanding the pivotal role of Nesprins in dilated cardiomyopathy research.
Collapse
Affiliation(s)
- Qin Qin
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Zi-Yi Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Yangyuanzhi Liu
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China
| | - Chunyu Cao
- School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China; College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Lin Teng
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, UK.
| |
Collapse
|
2
|
Belaadi N, Guilluy C. Life outside the LINC complex - Do SUN proteins have LINC-independent functions? Bioessays 2024; 46:e2400034. [PMID: 38798157 PMCID: PMC11262984 DOI: 10.1002/bies.202400034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Sad1 and UNC84 (SUN) and Klarsicht, ANC-1, and Syne homology (KASH) proteins interact at the nuclear periphery to form the linker of nucleoskeleton and cytoskeleton (LINC) complex, spanning the nuclear envelope (NE) and connecting the cytoskeleton with the nuclear interior. It is now well-documented that several cellular functions depend on LINC complex formation, including cell differentiation and migration. Intriguingly, recent studies suggest that SUN proteins participate in cellular processes where their association with KASH proteins may not be required. Building on this recent research, we elaborate on the hypothesis that SUN proteins may perform LINC-independent functions and discuss the modalities that may allow SUN proteins to function at the INM when they are not forming LINC complex.
Collapse
Affiliation(s)
- Nejma Belaadi
- Altos Labs, Cambridge Institute of Science, Cambridge, CB21 6GP, UK
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, North Carolina State University, USA
| |
Collapse
|
3
|
Bougaran P, Bautch VL. Life at the crossroads: the nuclear LINC complex and vascular mechanotransduction. Front Physiol 2024; 15:1411995. [PMID: 38831796 PMCID: PMC11144885 DOI: 10.3389/fphys.2024.1411995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Vascular endothelial cells line the inner surface of all blood vessels, where they are exposed to polarized mechanical forces throughout their lifespan. Both basal substrate interactions and apical blood flow-induced shear stress regulate blood vessel development, remodeling, and maintenance of vascular homeostasis. Disruption of these interactions leads to dysfunction and vascular pathologies, although how forces are sensed and integrated to affect endothelial cell behaviors is incompletely understood. Recently the endothelial cell nucleus has emerged as a prominent force-transducing organelle that participates in vascular mechanotransduction, via communication to and from cell-cell and cell-matrix junctions. The LINC complex, composed of SUN and nesprin proteins, spans the nuclear membranes and connects the nuclear lamina, the nuclear envelope, and the cytoskeleton. Here we review LINC complex involvement in endothelial cell mechanotransduction, describe unique and overlapping functions of each LINC complex component, and consider emerging evidence that two major SUN proteins, SUN1 and SUN2, orchestrate a complex interplay that extends outward to cell-cell and cell-matrix junctions and inward to interactions within the nucleus and chromatin. We discuss these findings in relation to vascular pathologies such as Hutchinson-Gilford progeria syndrome, a premature aging disorder with cardiovascular impairment. More knowledge of LINC complex regulation and function will help to understand how the nucleus participates in endothelial cell force sensing and how dysfunction leads to cardiovascular disease.
Collapse
Affiliation(s)
- Pauline Bougaran
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
| | - Victoria L. Bautch
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Gurusaran M, Erlandsen BS, Davies OR. The crystal structure of SUN1-KASH6 reveals an asymmetric LINC complex architecture compatible with nuclear membrane insertion. Commun Biol 2024; 7:138. [PMID: 38291267 PMCID: PMC10827754 DOI: 10.1038/s42003-024-05794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The LINC complex transmits cytoskeletal forces into the nucleus to control the structure and movement of nuclear contents. It is formed of nuclear SUN and cytoplasmic KASH proteins, which interact within the nuclear lumen, immediately below the outer nuclear membrane. However, the symmetrical location of KASH molecules within SUN-KASH complexes in previous crystal structures has been difficult to reconcile with the steric requirements for insertion of their immediately upstream transmembrane helices into the outer nuclear membrane. Here, we report the crystal structure of the SUN-KASH complex between SUN1 and JAW1/LRMP (KASH6) in an asymmetric 9:6 configuration. This intertwined assembly involves two distinct KASH conformations such that all six KASH molecules emerge on the same molecular surface. Hence, they are ideally positioned for insertion of upstream sequences into the outer nuclear membrane. Thus, we report a SUN-KASH complex architecture that appears to be directly compatible with its biological role.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Benedikte S Erlandsen
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
5
|
Alexander LT, Durairaj J, Kryshtafovych A, Abriata LA, Bayo Y, Bhabha G, Breyton C, Caulton SG, Chen J, Degroux S, Ekiert DC, Erlandsen BS, Freddolino PL, Gilzer D, Greening C, Grimes JM, Grinter R, Gurusaran M, Hartmann MD, Hitchman CJ, Keown JR, Kropp A, Kursula P, Lovering AL, Lemaitre B, Lia A, Liu S, Logotheti M, Lu S, Markússon S, Miller MD, Minasov G, Niemann HH, Opazo F, Phillips GN, Davies OR, Rommelaere S, Rosas‐Lemus M, Roversi P, Satchell K, Smith N, Wilson MA, Wu K, Xia X, Xiao H, Zhang W, Zhou ZH, Fidelis K, Topf M, Moult J, Schwede T. Protein target highlights in CASP15: Analysis of models by structure providers. Proteins 2023; 91:1571-1599. [PMID: 37493353 PMCID: PMC10792529 DOI: 10.1002/prot.26545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.
Collapse
Affiliation(s)
- Leila T. Alexander
- BiozentrumUniversity of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | - Janani Durairaj
- BiozentrumUniversity of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | | | - Luciano A. Abriata
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yusupha Bayo
- Department of BiosciencesUniversity of MilanoMilanItaly
- IBBA‐CNR Unit of MilanoInstitute of Agricultural Biology and BiotechnologyMilanItaly
| | - Gira Bhabha
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
| | | | | | - James Chen
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
| | | | - Damian C. Ekiert
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
- Department of MicrobiologyNew York University School of MedicineNew YorkNew YorkUSA
| | - Benedikte S. Erlandsen
- Wellcome Centre for Cell BiologyInstitute of Cell Biology, University of EdinburghEdinburghUK
| | - Peter L. Freddolino
- Department of Biological Chemistry, Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Dominic Gilzer
- Department of ChemistryBielefeld UniversityBielefeldGermany
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Securing Antarctica's Environmental FutureMonash UniversityClaytonVictoriaAustralia
- Centre to Impact AMRMonash UniversityClaytonVictoriaAustralia
- ARC Research Hub for Carbon Utilisation and RecyclingMonash UniversityClaytonVictoriaAustralia
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Centre for Electron Microscopy of Membrane ProteinsMonash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
| | - Manickam Gurusaran
- Wellcome Centre for Cell BiologyInstitute of Cell Biology, University of EdinburghEdinburghUK
| | - Marcus D. Hartmann
- Max Planck Institute for BiologyTübingenGermany
- Interfaculty Institute of Biochemistry, University of TübingenTübingenGermany
| | - Charlie J. Hitchman
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
| | - Jeremy R. Keown
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Ashleigh Kropp
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Petri Kursula
- Department of BiomedicineUniversity of BergenBergenNorway
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | | | - Bruno Lemaitre
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Andrea Lia
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
- ISPA‐CNR Unit of LecceInstitute of Sciences of Food ProductionLecceItaly
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Maria Logotheti
- Max Planck Institute for BiologyTübingenGermany
- Interfaculty Institute of Biochemistry, University of TübingenTübingenGermany
- Present address:
Institute of BiochemistryUniversity of GreifswaldGreifswaldGermany
| | - Shuze Lu
- Lanzhou University School of Life SciencesLanzhouChina
| | | | | | - George Minasov
- Department of Microbiology‐ImmunologyNorthwestern Feinberg School of MedicineChicagoIllinoisUSA
| | | | - Felipe Opazo
- NanoTag Biotechnologies GmbHGöttingenGermany
- Institute of Neuro‐ and Sensory PhysiologyUniversity of Göttingen Medical CenterGöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
| | - George N. Phillips
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Owen R. Davies
- Wellcome Centre for Cell BiologyInstitute of Cell Biology, University of EdinburghEdinburghUK
| | - Samuel Rommelaere
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Monica Rosas‐Lemus
- Department of Microbiology‐ImmunologyNorthwestern Feinberg School of MedicineChicagoIllinoisUSA
- Present address:
Department of Molecular Genetics and MicrobiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Pietro Roversi
- IBBA‐CNR Unit of MilanoInstitute of Agricultural Biology and BiotechnologyMilanItaly
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
| | - Karla Satchell
- Department of Microbiology‐ImmunologyNorthwestern Feinberg School of MedicineChicagoIllinoisUSA
| | - Nathan Smith
- Department of Biochemistry and the Redox Biology CenterUniversity of NebraskaLincolnNebraskaUSA
| | - Mark A. Wilson
- Department of Biochemistry and the Redox Biology CenterUniversity of NebraskaLincolnNebraskaUSA
| | - Kuan‐Lin Wu
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Xian Xia
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Han Xiao
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of ChemistryRice UniversityHoustonTexasUSA
- Department of BioengineeringRice UniversityHoustonTexasUSA
| | - Wenhua Zhang
- Lanzhou University School of Life SciencesLanzhouChina
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Maya Topf
- University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- Centre for Structural Systems BiologyLeibniz‐Institut für Virologie (LIV)HamburgGermany
| | - John Moult
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Torsten Schwede
- BiozentrumUniversity of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| |
Collapse
|
6
|
Gurusaran M, Biemans JJ, Wood CW, Davies OR. Molecular insights into LINC complex architecture through the crystal structure of a luminal trimeric coiled-coil domain of SUN1. Front Cell Dev Biol 2023; 11:1144277. [PMID: 37416798 PMCID: PMC10320395 DOI: 10.3389/fcell.2023.1144277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The LINC complex, consisting of interacting SUN and KASH proteins, mechanically couples nuclear contents to the cytoskeleton. In meiosis, the LINC complex transmits microtubule-generated forces to chromosome ends, driving the rapid chromosome movements that are necessary for synapsis and crossing over. In somatic cells, it defines nuclear shape and positioning, and has a number of specialised roles, including hearing. Here, we report the X-ray crystal structure of a coiled-coiled domain of SUN1's luminal region, providing an architectural foundation for how SUN1 traverses the nuclear lumen, from the inner nuclear membrane to its interaction with KASH proteins at the outer nuclear membrane. In combination with light and X-ray scattering, molecular dynamics and structure-directed modelling, we present a model of SUN1's entire luminal region. This model highlights inherent flexibility between structured domains, and raises the possibility that domain-swap interactions may establish a LINC complex network for the coordinated transmission of cytoskeletal forces.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jelle J. Biemans
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Christopher W. Wood
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
7
|
Prüschenk S, Majer M, Schlossmann J. Novel Functional Features of cGMP Substrate Proteins IRAG1 and IRAG2. Int J Mol Sci 2023; 24:9837. [PMID: 37372987 DOI: 10.3390/ijms24129837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The inositol triphosphate-associated proteins IRAG1 and IRAG2 are cGMP kinase substrate proteins that regulate intracellular Ca2+. Previously, IRAG1 was discovered as a 125 kDa membrane protein at the endoplasmic reticulum, which is associated with the intracellular Ca2+ channel IP3R-I and the PKGIβ and inhibits IP3R-I upon PKGIβ-mediated phosphorylation. IRAG2 is a 75 kDa membrane protein homolog of IRAG1 and was recently also determined as a PKGI substrate. Several (patho-)physiological functions of IRAG1 and IRAG2 were meanwhile elucidated in a variety of human and murine tissues, e.g., of IRAG1 in various smooth muscles, heart, platelets, and other blood cells, of IRAG2 in the pancreas, heart, platelets, and taste cells. Hence, lack of IRAG1 or IRAG2 leads to diverse phenotypes in these organs, e.g., smooth muscle and platelet disorders or secretory deficiency, respectively. This review aims to highlight the recent research regarding these two regulatory proteins to envision their molecular and (patho-)physiological tasks and to unravel their functional interplay as possible (patho-)physiological counterparts.
Collapse
Affiliation(s)
- Sally Prüschenk
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Majer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
8
|
Kozono T, Jogano C, Okumura W, Sato H, Matsui H, Takagi T, Okumura N, Takao T, Tonozuka T, Nishikawa A. Cleavage of the Jaw1 C-terminal region enhances its augmentative effect on the Ca2+ release via IP3 receptors. J Cell Sci 2023; 136:287037. [PMID: 36789796 DOI: 10.1242/jcs.260439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Jaw1 (also known as IRAG2), a tail-anchored protein with 39 carboxyl (C)-terminal amino acids, is oriented to the lumen of the endoplasmic reticulum and outer nuclear membrane. We previously reported that Jaw1, as a member of the KASH protein family, plays a role in maintaining nuclear shape via its C-terminal region. Furthermore, we recently reported that Jaw1 functions as an augmentative effector of Ca2+ release from the endoplasmic reticulum by interacting with the inositol 1,4,5-trisphosphate receptors (IP3Rs). Intriguingly, the C-terminal region is partially cleaved, meaning that Jaw1 exists in the cell in at least two forms - uncleaved and cleaved. However, the mechanism of the cleavage event and its physiological significance remain to be determined. In this study, we demonstrate that the C-terminal region of Jaw1 is cleaved after its insertion by the signal peptidase complex (SPC). Particularly, our results indicate that the SPC with the catalytic subunit SEC11A, but not SEC11C, specifically cleaves Jaw1. Furthermore, using a mutant with a defect in the cleavage event, we demonstrate that the cleavage event enhances the augmentative effect of Jaw1 on the Ca2+ release ability of IP3Rs.
Collapse
Affiliation(s)
- Takuma Kozono
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Chifuyu Jogano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Wataru Okumura
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hiroyuki Sato
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hitomi Matsui
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Tsubasa Takagi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Nobuaki Okumura
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.,Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.,Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
9
|
Taiber S, Gozlan O, Cohen R, Andrade LR, Gregory EF, Starr DA, Moran Y, Hipp R, Kelley MW, Manor U, Sprinzak D, Avraham KB. A Nesprin-4/kinesin-1 cargo model for nuclear positioning in cochlear outer hair cells. Front Cell Dev Biol 2022; 10:974168. [PMID: 36211453 PMCID: PMC9537699 DOI: 10.3389/fcell.2022.974168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/07/2022] [Indexed: 11/14/2022] Open
Abstract
Nuclear positioning is important for the functionality of many cell types and is mediated by interactions of cytoskeletal elements and nucleoskeleton proteins. Nesprin proteins, part of the linker of nucleoskeleton and cytoskeleton (LINC) complex, have been shown to participate in nuclear positioning in multiple cell types. Outer hair cells (OHCs) in the inner ear are specialized sensory epithelial cells that utilize somatic electromotility to amplify auditory signals in the cochlea. Recently, Nesprin-4 (encoded by Syne4) was shown to play a crucial role in nuclear positioning in OHCs. Syne4 deficiency in humans and mice leads to mislocalization of the OHC nuclei and cell death resulting in deafness. However, it is unknown how Nesprin-4 mediates the position of the nucleus, and which other molecular components are involved in this process. Here, we show that the interaction of Nesprin-4 and the microtubule motor kinesin-1 is mediated by a conserved 4 amino-acid motif. Using in vivo AAV gene delivery, we show that this interaction is critical for nuclear positioning and hearing in mice. Nuclear mislocalization and cell death of OHCs coincide with the onset of hearing and electromotility and are solely restricted to outer, but not inner, hair cells. Likewise, the C. elegans functional homolog of Nesprin-4, UNC-83, uses a similar motif to mediate interactions between migrating nuclei and kinesin-1. Overall, our results suggest that OHCs require unique cellular machinery for proper nuclear positioning at the onset of electromotility. This machinery relies on the interaction between Nesprin-4 and kinesin-1 motors supporting a microtubule cargo model for nuclear positioning.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Gozlan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roie Cohen
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo R. Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rebecca Hipp
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel,*Correspondence: David Sprinzak, ; Karen B. Avraham,
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel,*Correspondence: David Sprinzak, ; Karen B. Avraham,
| |
Collapse
|
10
|
Okumura W, Kozono T, Sato H, Matsui H, Takagi T, Tonozuka T, Nishikawa A. Jaw1/LRMP increases Ca 2+ influx upon GPCR stimulation with heterogeneous effect on the activity of each ITPR subtype. Sci Rep 2022; 12:9476. [PMID: 35676525 PMCID: PMC9177832 DOI: 10.1038/s41598-022-13620-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Ca2+ influx upon G protein-coupled receptor (GPCR) stimulation is observed as a cytosolic Ca2+ concentration oscillation crucial to initiating downstream responses including cell proliferation, differentiation, and cell–cell communication. Although Jaw1 is known to interact with inositol 1,4,5-triphosphate receptor (ITPRs), Ca2+ channels on the endoplasmic reticulum, the function of Jaw1 in the Ca2+ dynamics with physiological stimulation remains unclear. In this study, using inducible Jaw1-expressing HEK293 cells, we showed that Jaw1 increases Ca2+ influx by GPCR stimulation via changing the Ca2+ influx oscillation pattern. Furthermore, we showed that Jaw1 increases the Ca2+ release activity of all ITPR subtypes in a subtly different manner. It is well known that the Ca2+ influx oscillation pattern varies from cell type to cell type, therefore these findings provide an insight into the relationship between the heterogeneous Ca2+ dynamics and the specific ITPR and Jaw1 expression patterns.
Collapse
Affiliation(s)
- Wataru Okumura
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Takuma Kozono
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Hiroyuki Sato
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Hitomi Matsui
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Tsubasa Takagi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Atsushi Nishikawa
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan. .,Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan. .,Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
| |
Collapse
|
11
|
Abstract
Herpesviruses assemble new viral particles in the nucleus. These nucleocapsids bud through the inner nuclear membrane to produce enveloped viral particles in the perinuclear space before fusing with the outer nuclear membrane to reach the cytoplasm. This unusual route is necessary since viral capsids are too large to pass through nuclear pores. However, the transient perinuclear nucleocapsids (250 nm in diameter) are also larger than the width of the perinuclear space (30 to 50 nm). Interestingly, linker of the nucleoskeleton and cytoskeleton (LINC) components SUN and KASH connect the inner and outer nuclear membranes and regulate their spacing. Previous work by others on the related pseudorabies virus and human cytomegalovirus showed that they functionally interact with SUN proteins. To clarify the role of SUN proteins, we explored their impact on herpes simplex virus 1 (HSV-1), another herpesvirus. Using dominant negative SUN mutants and RNA interference, we show that HSV-1 propagation is dependent on the LINC complex. In contrast to pseudorabies virus, SUN2 disruption by either approach led to increased HSV-1 extracellular viral yields. This SUN2 dependency may be linked to its greater impact on perinuclear spacing in infected cells compared to SUN1. Finally, the virus itself seems to modulate perinuclear spacing. IMPORTANCE The large size of herpesviruses prevents them from travelling across the nuclear pores, and they instead egress across the two nuclear membranes, generating short-lived enveloped perinuclear virions. This poses a challenge as the perinuclear space is smaller than the virions. This implies the separation (unzipping) of the two nuclear membranes to accommodate the viral particles. The LINC complex bridges the two nuclear membranes and is an important regulator of perinuclear spacing. Work by others hint at its functional implication during pseudorabies virus and cytomegalovirus propagation. The present study probes the importance for HSV-1 of the SUN proteins, the LINC components found in the inner nuclear membrane. Using dominant negative constructs and RNA interference (RNAi), the data reveal that SUN2 exhibits antiviral propriety toward HSV-1, as disrupting the protein leads to increased viral yields. This is in contrast with that reported for pseudorabies and suggests that differences among herpesviruses may, once again, prevail.
Collapse
|
12
|
Takata T, Matsumura M. The LINC Complex Assists the Nuclear Import of Mechanosensitive Transcriptional Regulators. Results Probl Cell Differ 2022; 70:315-337. [PMID: 36348113 DOI: 10.1007/978-3-031-06573-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mechanical forces play pivotal roles in directing cell functions and fate. To elicit gene expression, either intrinsic or extrinsic mechanical information are transmitted into the nucleus beyond the nuclear envelope via at least two distinct pathways, possibly more. The first and well-known pathway utilizes the canonical nuclear transport of mechanoresponsive transcriptional regulators through the nuclear pore complex, which is an exclusive route for macromolecular trafficking between the cytoplasm and nucleoplasm. The second pathway depends on the linker of the nucleoskeleton and cytoskeleton (LINC) complex, which is a molecular bridge traversing the nuclear envelope between the cytoskeleton and nucleoskeleton. This protein complex is a central component in mechanotransduction at the nuclear envelope that transmits mechanical information from the cytoskeleton into the nucleus to influence the nuclear structure, nuclear stiffness, chromatin organization, and gene expression. Besides the mechanical force transducing function, recent increasing evidence shows that the LINC complex plays a role in controlling nucleocytoplasmic transport of mechanoresponsive transcriptional regulators. Here we discuss recent findings regarding the contribution of the LINC complex to the regulation of intracellular localization of the most-notable mechanosensitive transcriptional regulators, β-catenin, YAP, and TAZ.
Collapse
Affiliation(s)
- Tomoyo Takata
- Ehime Prefectural University of Health Sciences, Tobe, Ehime, Japan
| | - Miki Matsumura
- Ehime Prefectural University of Health Sciences, Tobe, Ehime, Japan.
| |
Collapse
|
13
|
Jin X, Chen L, Zhou N, Ni H, Zu L, He J, Yang L, Zhu Y, Sun X, Li X, Xu S. LRMP Associates With Immune Infiltrates and Acts as a Prognostic Biomarker in Lung Adenocarcinoma. Front Mol Biosci 2021; 8:711928. [PMID: 34901148 PMCID: PMC8661541 DOI: 10.3389/fmolb.2021.711928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Lymphoid-restricted membrane protein (LRMP) is an endoplasmic reticulum-associated protein that is expressed in a developmentally regulated manner in both B and T cell lineages. However, the role of LRMP in the growth, prognosis and immune infiltration in lung adenocarcinoma (LUAD) remains unclear. Method: The expression levels of LRMP mRNA in tumor and normal tissues were analyzed using Tumor Immune Estimation Resource 2.0 (TIMER 2.0) and Gene Expression Profiling Interactive Analysis 2 (GEPIA 2). LRMP protein expression was examined using the Human Protein Atlas. In vitro experiments, including qRT-PCR Western blot and immunohistochemistry staining were also performed to investigate LRMP expression. GEPIA2 and Kaplan-Meier plotter databases were used to analyze the clinical prognostic significance of LRMP. To further confirm the underlying function of LRMP, the data were analyzed using gene set enrichment analysis. Moreover, we also constructed plasmids to overexpress LRMP and explored the effect of LRMP in A549 cell line. Additionally, Tumor Immune single-cell Hub was used to investigate the distribution of LRMP in the LUAD immune microenvironment; TIMER and CIBERSORT were used to investigate the relationships among LRMP, LRMP co-expressed genes, and tumor-infiltrating immune cells; Finally, the correlations between LRMP and immune checkpoints were analyzed using TIMER 2.0. Results: The expression of LRMP was significantly lower in LUAD tissues and cell lines. High LRMP expression is associated with a better prognosis in patients with LUAD. In vitro experimental studies demonstrated that overexpression of LRMP could decrease the proliferation, migration and invasion in A549 cells, and downregulated multiple oncogenic signaling pathways, including p-STAT3, p-PI3K-p-AKT, p-MEK and EMT pathways. GSEA results showed that immuno-related and cell adhesion pathways were enriched in samples with high LRMP expression. LRMP and its co-expressed genes were positively correlated with various tumor-infiltrating immune cells and their markers. Additionally, LRMP positively correlated with immune checkpoints. Conclusions: Our data suggest that LRMP may act as a tumor suppressor gene and indicates a better prognosis. Moreover, LRMP is associated with immune infiltrates which may be involved in immunotherapy response in LUAD. Further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Xin Jin
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Liwei Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning Zhou
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Ni
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinling He
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingqi Yang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yifan Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyue Sun
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
14
|
Goelzer M, Goelzer J, Ferguson ML, Neu CP, Uzer G. Nuclear envelope mechanobiology: linking the nuclear structure and function. Nucleus 2021; 12:90-114. [PMID: 34455929 PMCID: PMC8432354 DOI: 10.1080/19491034.2021.1962610] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
The nucleus, central to cellular activity, relies on both direct mechanical input as well as its molecular transducers to sense external stimuli and respond by regulating intra-nuclear chromatin organization that determines cell function and fate. In mesenchymal stem cells of musculoskeletal tissues, changes in nuclear structures are emerging as a key modulator of their differentiation and proliferation programs. In this review we will first introduce the structural elements of the nucleoskeleton and discuss the current literature on how nuclear structure and signaling are altered in relation to environmental and tissue level mechanical cues. We will focus on state-of-the-art techniques to apply mechanical force and methods to measure nuclear mechanics in conjunction with DNA, RNA, and protein visualization in living cells. Ultimately, combining real-time nuclear deformations and chromatin dynamics can be a powerful tool to study mechanisms of how forces affect the dynamics of genome function.
Collapse
Affiliation(s)
- Matthew Goelzer
- Materials Science and Engineering, Boise State University, Boise, ID, US
| | | | - Matthew L. Ferguson
- Biomolecular Science, Boise State University, Boise, ID, US
- Physics, Boise State University, Boise, ID, US
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, US
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, US
| |
Collapse
|
15
|
van Ingen MJA, Kirby TJ. LINCing Nuclear Mechanobiology With Skeletal Muscle Mass and Function. Front Cell Dev Biol 2021; 9:690577. [PMID: 34368139 PMCID: PMC8335485 DOI: 10.3389/fcell.2021.690577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle demonstrates a high degree of adaptability in response to changes in mechanical input. The phenotypic transformation in response to mechanical cues includes changes in muscle mass and force generating capabilities, yet the molecular pathways that govern skeletal muscle adaptation are still incompletely understood. While there is strong evidence that mechanotransduction pathways that stimulate protein synthesis play a key role in regulation of muscle mass, there are likely additional mechano-sensitive mechanisms important for controlling functional muscle adaptation. There is emerging evidence that the cell nucleus can directly respond to mechanical signals (i.e., nuclear mechanotransduction), providing a potential additional level of cellular regulation for controlling skeletal muscle mass. The importance of nuclear mechanotransduction in cellular function is evident by the various genetic diseases that arise from mutations in proteins crucial to the transmission of force between the cytoskeleton and the nucleus. Intriguingly, these diseases preferentially affect cardiac and skeletal muscle, suggesting that nuclear mechanotransduction is critically important for striated muscle homeostasis. Here we discuss our current understanding for how the nucleus acts as a mechanosensor, describe the main cytoskeletal and nuclear proteins involved in the process, and propose how similar mechanoresponsive mechanisms could occur in the unique cellular environment of a myofiber. In addition, we examine how nuclear mechanotransduction fits into our current framework for how mechanical stimuli regulates skeletal muscle mass.
Collapse
Affiliation(s)
- Maria J A van Ingen
- Biomolecular Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
16
|
Jahed Z, Domkam N, Ornowski J, Yerima G, Mofrad MRK. Molecular models of LINC complex assembly at the nuclear envelope. J Cell Sci 2021; 134:269219. [PMID: 34152389 DOI: 10.1242/jcs.258194] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large protein complexes assemble at the nuclear envelope to transmit mechanical signals between the cytoskeleton and nucleoskeleton. These protein complexes are known as the linkers of the nucleoskeleton and cytoskeleton complexes (LINC complexes) and are formed by the interaction of SUN and KASH domain proteins in the nuclear envelope. Ample evidence suggests that SUN-KASH complexes form higher-order assemblies to withstand and transfer forces across the nuclear envelope. Herein, we present a review of recent studies over the past few years that have shed light on the mechanisms of SUN-KASH interactions, their higher order assembly, and the molecular mechanisms of force transfer across these complexes.
Collapse
Affiliation(s)
- Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, CA 92039, USA
| | - Nya Domkam
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Jessica Ornowski
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Cell stretchers and the LINC complex in mechanotransduction. Arch Biochem Biophys 2021; 702:108829. [PMID: 33716002 DOI: 10.1016/j.abb.2021.108829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
How cells respond to mechanical forces from the surrounding environment is critical for cell survival and function. The LINC complex is a central component in the mechanotransduction pathway that transmits mechanical information from the cell surface to the nucleus. Through LINC complex functionality, the nucleus is able to respond to mechanical stress by altering nuclear structure, chromatin organization, and gene expression. The use of specialized devices that apply mechanical strain to cells have been central to investigating how mechanotransduction occurs, how cells respond to mechanical stress, and the role of the LINC complexes in these processes. A large variety of designs have been reported for these devices, with the most common type being cell stretchers. Here we highlight some of the salient features of cell stretchers and suggest some key parameters that should be considered when using these devices. We provide a brief overview of how the LINC complexes contribute to the cellular responses to mechanical strain. And finally, we suggest that stretchers may be a useful tool to study aging.
Collapse
|
18
|
Marchetti P, Antonov A, Anemona L, Vangapandou C, Montanaro M, Botticelli A, Mauriello A, Melino G, Catani MV. New immunological potential markers for triple negative breast cancer: IL18R1, CD53, TRIM, Jaw1, LTB, PTPRCAP. Discov Oncol 2021; 12:6. [PMID: 35201443 PMCID: PMC8777524 DOI: 10.1007/s12672-021-00401-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women worldwide, and settings of specific prognostic factors and efficacious therapies are made difficult by phenotypic heterogeneity of BC subtypes. Therefore, there is a current urgent need to define novel predictive genetic predictors that may be useful for stratifying patients with distinct prognostic outcomes. Here, we looked for novel molecular signatures for triple negative breast cancers (TNBCs). By a bioinformatic approach, we identified a panel of genes, whose expression was positively correlated with disease-free survival in TNBC patients, namely IL18R1, CD53, TRIM, Jaw1, LTB, and PTPRCAP, showing specific immune expression profiles linked to survival prediction; most of these genes are indeed expressed in immune cells and are required for productive lymphocyte activation. According to our hypothesis, these genes were not, or poorly, expressed in different TNBC cell lines, derived from either primary breast tumours or metastatic pleural effusions. This conclusion was further supported in vivo, as immuno-histochemical analysis on biopsies of TNBC invasive ductal carcinomas highlighted differential expression of these six genes in cancer cells, as well as in intra- and peri-tumoral infiltrating lymphocytes. Our data open to the possibility that inter-tumour heterogeneity of immune markers might have predictive value; further investigations are recommended in order to establish the real power of cancer-related immune profiles as prognostic factors.
Collapse
Affiliation(s)
- Paolo Marchetti
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alexey Antonov
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR UK
| | - Lucia Anemona
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Chaitania Vangapandou
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Andrea Botticelli
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - M. Valeria Catani
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
19
|
The SUN2-nesprin-2 LINC complex and KIF20A function in the Golgi dispersal. Sci Rep 2021; 11:5358. [PMID: 33686165 PMCID: PMC7940470 DOI: 10.1038/s41598-021-84750-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
The morphology of the Golgi complex is influenced by the cellular context, which strictly correlates with nuclear functions; however, the mechanism underlying this association remains elusive. The inner nuclear membrane SUN proteins, SUN1 and SUN2, have diverse functions together with the outer nuclear membrane nesprin proteins, which comprise the LINC complex. We found that depletion of SUN1 leads to Golgi complex dispersion with maintenance of ministacks and retained function for vesicle transport through the Golgi complex. In addition, SUN2 associates with microtubule plus-end-directed motor KIF20A, possibly via nesprin-2. KIF20A plays a role in the Golgi dispersion in conjunction with the SUN2-nesprin-2 LINC complex in SUN1-depleted cells, suggesting that SUN1 suppresses the function of the SUN2-nesprin-2 LINC complex under a steady-state condition. Further, SUN1-knockout mice, which show impaired cerebellar development and cerebellar ataxia, presented altered Golgi morphology in Purkinje cells. These findings revealed a regulation of the Golgi organization by the LINC complex.
Collapse
|
20
|
Kozono T, Sato H, Okumura W, Jogano C, Tamura-Nakano M, Kawamura YI, Rohrer J, Tonozuka T, Nishikawa A. The N-terminal region of Jaw1 has a role to inhibit the formation of organized smooth endoplasmic reticulum as an intrinsically disordered region. Sci Rep 2021; 11:753. [PMID: 33436890 PMCID: PMC7804115 DOI: 10.1038/s41598-020-80258-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Jaw1/LRMP is a type II integral membrane protein that is localized at the endoplasmic reticulum (ER) and outer nuclear membrane. We previously reported that a function of Jaw1 is to maintain the nuclear shape as a KASH protein via its carboxyl terminal region, a component of linker of nucleoskeleton and cytoskeleton complex in the oligomeric state. Although the oligomerization of some KASH proteins via the cytosolic regions serves to stabilize protein-protein interactions, the issue of how the oligomerization of Jaw1 is regulated is not completely understood. Therefore, we focused on three distinct regions on the cytosolic face of Jaw1: the N-terminal region, the coiled-coil domain and the stem region, in terms of oligomerization. A co-immunoprecipitation assay showed that its coiled-coil domain is a candidate for the oligomerization site. Furthermore, our data indicated that the N-terminal region prevents the aberrant oligomerization of Jaw1 as an intrinsically disordered region (IDR). Importantly, the ectopic expression of an N-terminal region deleted mutant caused the formation of organized smooth ER (OSER), structures such as nuclear karmellae and whorls, in B16F10 cells. Furthermore, this OSER interfered with the localization of the oligomer and interactors such as the type III inositol 1,4,5-triphosphate receptor (IP3R3) and SUN2. In summary, the N-terminal region of Jaw1 inhibits the formation of OSER as an IDR to maintain the homeostatic localization of interactors on the ER membrane.
Collapse
Affiliation(s)
- Takuma Kozono
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.,Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Hiroyuki Sato
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Wataru Okumura
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Chifuyu Jogano
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yuki I Kawamura
- Department of Gastroenterology, The Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Jack Rohrer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, CH-8820, Waedenswil, Switzerland
| | - Takashi Tonozuka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Atsushi Nishikawa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan. .,Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan. .,Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| |
Collapse
|
21
|
Starr DA. A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout Caenorhabditis elegans development. Exp Biol Med (Maywood) 2019; 244:1323-1332. [PMID: 31495194 PMCID: PMC6880151 DOI: 10.1177/1535370219871965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear migration and anchorage, together referred to as nuclear positioning, are central to many cellular and developmental events. Nuclear positioning is mediated by a conserved network of nuclear envelope proteins that interacts with force generators in the cytoskeleton. At the heart of this network are li nker of n ucleoskeleton and c ytoskeleton (LINC) complexes made of S ad1 and UN C-84 (SUN) proteins at the inner nuclear membrane and K larsicht, A NC-1, and S yne homology (KASH) proteins in the outer nuclear membrane. LINC complexes span the nuclear envelope, maintain nuclear envelope architecture, designate the surface of nuclei distinctly from the contiguous endoplasmic reticulum, and were instrumental in the early evolution of eukaryotes. LINC complexes interact with lamins in the nucleus and with various cytoplasmic KASH effectors from the surface of nuclei. These effectors regulate the cytoskeleton, leading to a variety of cellular outputs including pronuclear migration, nuclear migration through constricted spaces, nuclear anchorage, centrosome attachment to nuclei, meiotic chromosome movements, and DNA damage repair. How LINC complexes are regulated and how they function are reviewed here. The focus is on recent studies elucidating the best-understood network of LINC complexes, those used throughout Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology,
University of California, Davis, CA 95616, USA
| |
Collapse
|
22
|
Zhang Q, Narayanan V, Mui KL, O'Bryan CS, Anderson RH, Kc B, Cabe JI, Denis KB, Antoku S, Roux KJ, Dickinson RB, Angelini TE, Gundersen GG, Conway DE, Lele TP. Mechanical Stabilization of the Glandular Acinus by Linker of Nucleoskeleton and Cytoskeleton Complex. Curr Biol 2019; 29:2826-2839.e4. [PMID: 31402305 PMCID: PMC6736724 DOI: 10.1016/j.cub.2019.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/03/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
The nucleoskeleton and cytoskeleton are important protein networks that govern cellular behavior and are connected together by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Mutations in LINC complex components may be relevant to cancer, but how cell-level changes might translate into tissue-level malignancy is unclear. We used glandular epithelial cells in a three-dimensional culture model to investigate the effect of perturbations of the LINC complex on higher order cellular architecture. We show that inducible LINC complex disruption in human mammary epithelial MCF-10A cells and canine kidney epithelial MDCK II cells mechanically destabilizes the acinus. Lumenal collapse occurs because the acinus is unstable to increased mechanical tension that is caused by upregulation of Rho-kinase-dependent non-muscle myosin II motor activity. These findings provide a potential mechanistic explanation for how disruption of LINC complex may contribute to a loss of tissue structure in glandular epithelia.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Keeley L Mui
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Christopher S O'Bryan
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | - Birendra Kc
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kevin B Denis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
23
|
Östlund C, Chang W, Gundersen GG, Worman HJ. Pathogenic mutations in genes encoding nuclear envelope proteins and defective nucleocytoplasmic connections. Exp Biol Med (Maywood) 2019; 244:1333-1344. [PMID: 31299860 DOI: 10.1177/1535370219862243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in genes encoding nuclear lamins and associated nuclear envelope proteins have been linked to a broad range of inherited diseases affecting different tissues and organs. These diseases are often referred to as laminopathies. Scientists have yet to elucidate exactly how pathogenic mutations leading to alteration of a nuclear envelope protein cause disease. Our relatively recent research has shown that pathogenic mutations in genes encoding nuclear envelope proteins lead to defective nucleocytoplasmic connections that disrupt proper functioning of the linker of nucleoskeleton and cytoskeleton complex in the establishment of cell polarity. These defects may explain, at least in part, pathogenic mechanisms underlying laminopathies.Impact statementMutations in genes encoding nuclear lamins and associated nuclear envelope proteins have been linked to several diseases affecting different tissues and organs. The pathogenic mechanisms underlying these diseases, often called laminopathies, remain poorly understood. Increased knowledge of the functions of different nuclear envelope proteins and the interactions between them is crucial to elucidate these disease mechanisms. Our research has shown that pathogenic mutations in genes encoding nuclear envelope proteins lead to defective nucleocytoplasmic connections that disrupt proper functioning of the linker of nucleoskeleton and cytoskeleton (LINC) complex in the establishment of cell polarity. These defects may contribute to the pathogenesis of laminopathies and provide novel targets for therapeutics.
Collapse
Affiliation(s)
- Cecilia Östlund
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wakam Chang
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|